Crowdsourcing Truth Inference via Reliability-Driven Multi-View Graph Embedding

众包 推论 计算机科学 图形 机器学习 可靠性(半导体) 嵌入 数据挖掘 人工智能 理论计算机科学 量子力学 物理 万维网 功率(物理)
作者
Gongqing Wu,Xingrui Zhuo,Xianyu Bao,Xuegang Hu,Richang Hong,Xindong Wu
出处
期刊:ACM Transactions on Knowledge Discovery From Data [Association for Computing Machinery]
卷期号:17 (5): 1-26 被引量:4
标识
DOI:10.1145/3565576
摘要

Crowdsourcing truth inference aims to assign a correct answer to each task from candidate answers that are provided by crowdsourced workers. A common approach is to generate workers’ reliabilities to represent the quality of answers. Although crowdsourced triples can be converted into various crowdsourced relationships, the available related methods are not effective in capturing these relationships to alleviate the harm to inference that is caused by conflicting answers. In this research, we propose a Re liability-driven M ulti-view G raph E mbedding framework for T ruth i nference (TiReMGE), which explores multiple crowdsourced relationships by organically integrating worker reliabilities into a graph space that is constructed from crowdsourced triples. Specifically, to create an interactive environment, we propose a reliability-driven initialization criterion for initializing vectors of tasks and workers as interactive carriers of reliabilities. From the perspective of multiple crowdsourced relationships, a multi-view graph embedding framework is proposed for reliability information interaction on a task-worker graph, which encodes latent crowdsourced relationships into vectors of workers and tasks for reliability update and truth inference. A heritable reliability updating method based on the Lagrange multiplier method is proposed to obtain reliabilities that match the quality of workers for interaction by a novel constraint law. Our ultimate goal is to minimize the Euclidean distance between the encoded task vector and the answer that is provided by a worker with high reliability. Extensive experimental results on nine real-world datasets demonstrate that TiReMGE significantly outperforms the nine state-of-the-art baselines.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
4秒前
sunsun完成签到,获得积分20
6秒前
小伍完成签到,获得积分10
6秒前
6秒前
开心的芒果完成签到,获得积分10
6秒前
CodeCraft应助wsgdhz采纳,获得10
8秒前
善学以致用应助skyfable采纳,获得10
8秒前
顾暖完成签到,获得积分10
10秒前
章章完成签到 ,获得积分10
10秒前
10秒前
赚钱的君完成签到,获得积分10
10秒前
qwe完成签到,获得积分10
12秒前
qyhl发布了新的文献求助10
12秒前
13秒前
14秒前
CDKSEVEN发布了新的文献求助10
15秒前
这个名字就比原来的好听完成签到,获得积分10
16秒前
香蕉觅云应助明理采珊采纳,获得10
16秒前
qyhl完成签到,获得积分10
17秒前
安和桥完成签到,获得积分10
18秒前
18秒前
章章发布了新的文献求助50
19秒前
21秒前
Mottri完成签到 ,获得积分10
21秒前
科研汪完成签到,获得积分10
22秒前
23秒前
25秒前
泥娃娃完成签到,获得积分10
25秒前
冷傲幻莲完成签到,获得积分10
25秒前
阿珩完成签到,获得积分10
26秒前
HEIKU应助安和桥采纳,获得10
27秒前
29秒前
鸽子完成签到 ,获得积分10
29秒前
bkagyin应助娟娟采纳,获得10
29秒前
明理采珊发布了新的文献求助10
31秒前
凌问晴发布了新的文献求助10
31秒前
31秒前
iuhgnor完成签到,获得积分10
33秒前
33秒前
高分求助中
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Zeitschrift für Orient-Archäologie 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Equality: What It Means and Why It Matters 300
A new Species and a key to Indian species of Heirodula Burmeister (Mantodea: Mantidae) 300
Apply error vector measurements in communications design 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3348115
求助须知:如何正确求助?哪些是违规求助? 2974408
关于积分的说明 8663702
捐赠科研通 2655054
什么是DOI,文献DOI怎么找? 1453833
科研通“疑难数据库(出版商)”最低求助积分说明 673087
邀请新用户注册赠送积分活动 663342