Crowdsourcing Truth Inference via Reliability-Driven Multi-View Graph Embedding

众包 推论 计算机科学 图形 机器学习 可靠性(半导体) 嵌入 数据挖掘 人工智能 理论计算机科学 量子力学 物理 万维网 功率(物理)
作者
Gongqing Wu,Xingrui Zhuo,Xianyu Bao,Xuegang Hu,Richang Hong,Xindong Wu
出处
期刊:ACM Transactions on Knowledge Discovery From Data [Association for Computing Machinery]
卷期号:17 (5): 1-26 被引量:5
标识
DOI:10.1145/3565576
摘要

Crowdsourcing truth inference aims to assign a correct answer to each task from candidate answers that are provided by crowdsourced workers. A common approach is to generate workers’ reliabilities to represent the quality of answers. Although crowdsourced triples can be converted into various crowdsourced relationships, the available related methods are not effective in capturing these relationships to alleviate the harm to inference that is caused by conflicting answers. In this research, we propose a Re liability-driven M ulti-view G raph E mbedding framework for T ruth i nference (TiReMGE), which explores multiple crowdsourced relationships by organically integrating worker reliabilities into a graph space that is constructed from crowdsourced triples. Specifically, to create an interactive environment, we propose a reliability-driven initialization criterion for initializing vectors of tasks and workers as interactive carriers of reliabilities. From the perspective of multiple crowdsourced relationships, a multi-view graph embedding framework is proposed for reliability information interaction on a task-worker graph, which encodes latent crowdsourced relationships into vectors of workers and tasks for reliability update and truth inference. A heritable reliability updating method based on the Lagrange multiplier method is proposed to obtain reliabilities that match the quality of workers for interaction by a novel constraint law. Our ultimate goal is to minimize the Euclidean distance between the encoded task vector and the answer that is provided by a worker with high reliability. Extensive experimental results on nine real-world datasets demonstrate that TiReMGE significantly outperforms the nine state-of-the-art baselines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哈哈哈发布了新的文献求助10
1秒前
思源应助豆觉子采纳,获得10
4秒前
4秒前
5秒前
6秒前
老迟到的芹菜完成签到,获得积分10
7秒前
呗呗兔发布了新的文献求助10
8秒前
chanyelo发布了新的文献求助10
9秒前
曾哥帅完成签到 ,获得积分10
10秒前
赘婿应助swallow采纳,获得10
11秒前
王立娅完成签到,获得积分10
11秒前
福尔摩环发布了新的文献求助10
12秒前
12秒前
12秒前
在宇宙遛弯儿完成签到 ,获得积分10
14秒前
14秒前
16秒前
16秒前
甜甜醉香发布了新的文献求助10
17秒前
王立娅发布了新的文献求助50
17秒前
ww发布了新的文献求助10
20秒前
小猛人发布了新的文献求助10
20秒前
大个应助lzzmy采纳,获得10
21秒前
离欢完成签到,获得积分20
22秒前
22秒前
刘国建郭菱香完成签到,获得积分10
23秒前
24秒前
酷波er应助甜甜醉香采纳,获得10
26秒前
所所应助刘国建郭菱香采纳,获得10
27秒前
完美世界应助naturehome采纳,获得10
27秒前
Sledge完成签到,获得积分10
27秒前
和谐诗双发布了新的文献求助10
27秒前
L_Zoe_D02发布了新的文献求助10
28秒前
YY发布了新的文献求助10
28秒前
29秒前
krinnme完成签到,获得积分20
30秒前
呗呗兔关注了科研通微信公众号
30秒前
一味地丶逞强完成签到,获得积分10
31秒前
31秒前
松111发布了新的文献求助10
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Corrosion and corrosion control 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5373754
求助须知:如何正确求助?哪些是违规求助? 4499770
关于积分的说明 14007232
捐赠科研通 4406707
什么是DOI,文献DOI怎么找? 2420672
邀请新用户注册赠送积分活动 1413421
关于科研通互助平台的介绍 1389992