Structural Modeling and Measuring Impact of Active Learning Methods in Engineering Education

数据收集 协议(科学) 计算机科学 工程教育 主题(文档) 人工智能 数学教育 心理学 图书馆学 数学 工程类 统计 工程管理 医学 替代医学 病理
作者
Leovani Marcial Guimarães,Renato da Silva Lima
出处
期刊:IEEE Transactions on Education [IEEE Education Society]
卷期号:66 (6): 543-552
标识
DOI:10.1109/te.2023.3259882
摘要

Contribution: This article presents a novel approach that demonstrates how students’ learning can be improved by increasing classroom adherence to active learning (AL) application, in a typical engineering education (EE) environment. It does that by using classroom observation protocol data and student assessment grades analyzed by a statistical tool, representing seven engineering programs.

Background: AL applications in EE have been growing in recent years and there have been relevant discussions about their effect on students learning. This research is grounded on a 2.5-year-long data collection process through objective measures, following a strict experimental design project. It differs from other studies where surveys are used for data collection.

Research Question: Can differences in students’ learning between traditional teaching and AL methods be distinguished by means of classroom observation protocol measures coupled with partial least-square structural equation modeling?

Methodology: An experimental research design was conducted in an Engineering Higher Education Institution, by taking independent measures of latent constructs’ indicators, such as student grades and AL classroom adherence levels. The data were subject to a partial least-squares structural equation modeling (PLS-SEM) approach for modeling, analysis, and validation.

Findings: The results suggested a nonlinear positive cause-and-effect relationship between AL adherence and learning, validated by several performance indexes, such as a learning prediction relevance $Q^{2}~\mathrm{predict}$ $=$ 0.453 and goodness of fit $=$ 0.588. The model demonstrated a learning score improvement from 45.89 to 74.90 as an effect of the adherence to AL score increase from 0 to 35.97.

最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
兴奋大船发布了新的文献求助10
1秒前
bingbing完成签到,获得积分20
1秒前
吨吨喝水发布了新的文献求助10
1秒前
白也完成签到,获得积分10
2秒前
2秒前
2秒前
3秒前
时尚俊驰发布了新的文献求助10
3秒前
Ava应助2333采纳,获得10
3秒前
yuanjingnan完成签到,获得积分10
4秒前
jialiu完成签到,获得积分10
4秒前
5秒前
停婷发布了新的文献求助10
6秒前
bingbing发布了新的文献求助10
6秒前
菠萝炒饭完成签到,获得积分10
7秒前
一键三连发布了新的文献求助10
7秒前
琦琦发布了新的文献求助10
8秒前
liuzengzhang666完成签到,获得积分10
8秒前
9秒前
。。。完成签到,获得积分10
9秒前
9秒前
10秒前
ED应助牛马人生采纳,获得10
10秒前
achill完成签到,获得积分10
10秒前
Hui完成签到,获得积分10
10秒前
韩soso完成签到,获得积分10
11秒前
迷人幻竹发布了新的文献求助30
11秒前
可爱芷容发布了新的文献求助10
11秒前
动听梨愁完成签到,获得积分10
12秒前
星辰大海应助bluesky采纳,获得10
13秒前
星辰大海应助盛夏蔚来采纳,获得10
13秒前
Embrace发布了新的文献求助10
13秒前
wdy111举报Ann求助涉嫌违规
14秒前
14秒前
dhts应助比巴卜采纳,获得10
15秒前
归尘发布了新的文献求助10
16秒前
16秒前
16秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987267
求助须知:如何正确求助?哪些是违规求助? 3529546
关于积分的说明 11245872
捐赠科研通 3268108
什么是DOI,文献DOI怎么找? 1804089
邀请新用户注册赠送积分活动 881339
科研通“疑难数据库(出版商)”最低求助积分说明 808653