CaCo: Both Positive and Negative Samples are Directly Learnable via Cooperative-Adversarial Contrastive Learning

计算机科学 人工智能 编码器 判别式 编码(集合论) 模式识别(心理学) 机器学习 代表(政治) 假阳性悖论 假阳性和假阴性 政治学 政治 操作系统 集合(抽象数据类型) 程序设计语言 法学
作者
Xiao Wang,Yuhang Huang,Dan Zeng,Guo-Jun Qi
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:45 (9): 10718-10730 被引量:7
标识
DOI:10.1109/tpami.2023.3262608
摘要

As a representative self-supervised method, contrastive learning has achieved great successes in unsupervised training of representations. It trains an encoder by distinguishing positive samples from negative ones given query anchors. These positive and negative samples play critical roles in defining the objective to learn the discriminative encoder, avoiding it from learning trivial features. While existing methods heuristically choose these samples, we present a principled method where both positive and negative samples are directly learnable end-to-end with the encoder. We show that the positive and negative samples can be cooperatively and adversarially learned by minimizing and maximizing the contrastive loss, respectively. This yields cooperative positives and adversarial negatives with respect to the encoder, which are updated to continuously track the learned representation of the query anchors over mini-batches. The proposed method achieves 71.3% and 75.3% in top-1 accuracy respectively over 200 and 800 epochs of pre-training ResNet-50 backbone on ImageNet1K without tricks such as multi-crop or stronger augmentations. With Multi-Crop, it can be further boosted into 75.7%. The source code and pre-trained model are released in https://github.com/maple-research-lab/caco.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
孙文杰完成签到 ,获得积分10
3秒前
4秒前
7秒前
7秒前
小小完成签到,获得积分20
8秒前
诚洁发布了新的文献求助10
10秒前
明天发布了新的文献求助10
10秒前
高不二发布了新的文献求助10
11秒前
852应助li采纳,获得10
13秒前
栗乾腾发布了新的文献求助10
14秒前
14秒前
传奇3应助judy891zhu采纳,获得10
14秒前
tian完成签到,获得积分10
15秒前
小哑巴发布了新的文献求助10
16秒前
彭于晏应助华W采纳,获得10
16秒前
Jae完成签到 ,获得积分10
19秒前
桐桐应助科研通管家采纳,获得10
19秒前
李健应助科研通管家采纳,获得10
19秒前
19秒前
19秒前
共享精神应助科研通管家采纳,获得10
19秒前
19秒前
顾矜应助科研通管家采纳,获得10
20秒前
完美世界应助科研通管家采纳,获得30
20秒前
Akim应助科研通管家采纳,获得10
20秒前
田様应助科研通管家采纳,获得10
20秒前
Lucas应助科研通管家采纳,获得10
20秒前
桐桐应助科研通管家采纳,获得10
20秒前
深情安青应助科研通管家采纳,获得10
20秒前
打打应助科研通管家采纳,获得10
20秒前
赘婿应助科研通管家采纳,获得10
20秒前
20秒前
隐形曼青应助科研通管家采纳,获得20
20秒前
852应助科研通管家采纳,获得10
20秒前
思源应助科研通管家采纳,获得10
20秒前
20秒前
传奇3应助科研通管家采纳,获得10
20秒前
tian发布了新的文献求助10
21秒前
英姑应助高不二采纳,获得10
21秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3999264
求助须知:如何正确求助?哪些是违规求助? 3538622
关于积分的说明 11274738
捐赠科研通 3277531
什么是DOI,文献DOI怎么找? 1807597
邀请新用户注册赠送积分活动 883950
科研通“疑难数据库(出版商)”最低求助积分说明 810080