CaCo: Both Positive and Negative Samples are Directly Learnable via Cooperative-Adversarial Contrastive Learning

计算机科学 人工智能 编码器 判别式 编码(集合论) 模式识别(心理学) 机器学习 代表(政治) 假阳性悖论 假阳性和假阴性 集合(抽象数据类型) 政治 政治学 法学 程序设计语言 操作系统
作者
Xiao Wang,Yuhang Huang,Dan Zeng,Guo-Jun Qi
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:45 (9): 10718-10730 被引量:7
标识
DOI:10.1109/tpami.2023.3262608
摘要

As a representative self-supervised method, contrastive learning has achieved great successes in unsupervised training of representations. It trains an encoder by distinguishing positive samples from negative ones given query anchors. These positive and negative samples play critical roles in defining the objective to learn the discriminative encoder, avoiding it from learning trivial features. While existing methods heuristically choose these samples, we present a principled method where both positive and negative samples are directly learnable end-to-end with the encoder. We show that the positive and negative samples can be cooperatively and adversarially learned by minimizing and maximizing the contrastive loss, respectively. This yields cooperative positives and adversarial negatives with respect to the encoder, which are updated to continuously track the learned representation of the query anchors over mini-batches. The proposed method achieves 71.3% and 75.3% in top-1 accuracy respectively over 200 and 800 epochs of pre-training ResNet-50 backbone on ImageNet1K without tricks such as multi-crop or stronger augmentations. With Multi-Crop, it can be further boosted into 75.7%. The source code and pre-trained model are released in https://github.com/maple-research-lab/caco.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
双青豆完成签到 ,获得积分10
2秒前
ADA发布了新的文献求助10
3秒前
陶醉的大白完成签到 ,获得积分10
3秒前
v小飞侠101发布了新的文献求助10
3秒前
ni应助十一采纳,获得10
4秒前
ShiauMo完成签到,获得积分10
4秒前
4秒前
5秒前
5秒前
5秒前
CipherSage应助Light采纳,获得10
6秒前
小于发布了新的文献求助10
6秒前
Jinyi发布了新的文献求助10
7秒前
8秒前
汉堡包应助joyland采纳,获得30
8秒前
8秒前
星辰大海应助诚心之桃采纳,获得10
8秒前
大模型应助daisy采纳,获得30
9秒前
11111发布了新的文献求助10
9秒前
文瑄完成签到 ,获得积分10
10秒前
yuanjw发布了新的文献求助10
10秒前
黑水仙发布了新的文献求助10
11秒前
11秒前
12秒前
XiaoDai完成签到,获得积分10
12秒前
dylan发布了新的文献求助10
12秒前
12秒前
烂烂发布了新的文献求助20
13秒前
13秒前
14秒前
NZH发布了新的文献求助10
15秒前
15秒前
16秒前
vadfdfb完成签到,获得积分10
17秒前
17秒前
daisy完成签到,获得积分20
17秒前
yyymmma发布了新的文献求助10
18秒前
外向的半芹完成签到,获得积分10
18秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3305612
求助须知:如何正确求助?哪些是违规求助? 2939343
关于积分的说明 8493224
捐赠科研通 2613787
什么是DOI,文献DOI怎么找? 1427585
科研通“疑难数据库(出版商)”最低求助积分说明 663156
邀请新用户注册赠送积分活动 647916