CaCo: Both Positive and Negative Samples are Directly Learnable via Cooperative-Adversarial Contrastive Learning

计算机科学 人工智能 编码器 判别式 编码(集合论) 模式识别(心理学) 机器学习 代表(政治) 假阳性悖论 假阳性和假阴性 政治学 政治 操作系统 集合(抽象数据类型) 程序设计语言 法学
作者
Xiao Wang,Yuhang Huang,Dan Zeng,Guo-Jun Qi
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:45 (9): 10718-10730 被引量:7
标识
DOI:10.1109/tpami.2023.3262608
摘要

As a representative self-supervised method, contrastive learning has achieved great successes in unsupervised training of representations. It trains an encoder by distinguishing positive samples from negative ones given query anchors. These positive and negative samples play critical roles in defining the objective to learn the discriminative encoder, avoiding it from learning trivial features. While existing methods heuristically choose these samples, we present a principled method where both positive and negative samples are directly learnable end-to-end with the encoder. We show that the positive and negative samples can be cooperatively and adversarially learned by minimizing and maximizing the contrastive loss, respectively. This yields cooperative positives and adversarial negatives with respect to the encoder, which are updated to continuously track the learned representation of the query anchors over mini-batches. The proposed method achieves 71.3% and 75.3% in top-1 accuracy respectively over 200 and 800 epochs of pre-training ResNet-50 backbone on ImageNet1K without tricks such as multi-crop or stronger augmentations. With Multi-Crop, it can be further boosted into 75.7%. The source code and pre-trained model are released in https://github.com/maple-research-lab/caco.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
甜美的秋凌完成签到,获得积分10
刚刚
10发布了新的文献求助10
1秒前
高高完成签到 ,获得积分10
1秒前
AAAAAAAAAAA发布了新的文献求助10
1秒前
2秒前
wxaaaa完成签到,获得积分10
2秒前
李爱国应助dd采纳,获得10
3秒前
4秒前
Jasper应助感性的凉面采纳,获得10
5秒前
5秒前
6秒前
6秒前
7秒前
情怀应助顺顺采纳,获得10
7秒前
garyaa发布了新的文献求助10
7秒前
7秒前
NexusExplorer应助奔奔采纳,获得10
7秒前
Orange应助Clean采纳,获得10
8秒前
Lucas应助ww采纳,获得10
8秒前
9秒前
ttttttuu完成签到,获得积分10
9秒前
10秒前
刘涵完成签到 ,获得积分10
10秒前
小马甲应助zhui采纳,获得10
10秒前
10完成签到,获得积分10
10秒前
10秒前
10秒前
Rainielove0215完成签到,获得积分0
11秒前
zz完成签到,获得积分10
12秒前
12秒前
kyle完成签到,获得积分10
14秒前
感性的凉面完成签到,获得积分20
14秒前
14秒前
请叫我风吹麦浪应助末岛采纳,获得10
15秒前
Aprial发布了新的文献求助30
15秒前
dd发布了新的文献求助10
15秒前
传奇3应助科研小菜鸟采纳,获得10
15秒前
在水一方应助惠惠采纳,获得10
16秒前
17秒前
冷艳贵公子王少完成签到 ,获得积分10
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794