A machine learning model to predict efficacy of neoadjuvant therapy in breast cancer based on dynamic changes in systemic immunity

免疫系统 纳特 乳腺癌 医学 逻辑回归 CD8型 肿瘤科 癌症 随机森林 外围设备 内科学 T细胞 机器学习 免疫学 计算机科学 计算机网络
作者
Yusong Wang,Mozhi Wang,Ke‐Da Yu,Shouping Xu,Pengfei Qiu,Zhidong Lyu,Mingke Cui,Qiang Zhang,Yingying Xu
出处
期刊:Cancer biology and medicine [Chinese Anti-Cancer Association]
卷期号:20 (3): 218-228 被引量:2
标识
DOI:10.20892/j.issn.2095-3941.2022.0513
摘要

Neoadjuvant therapy (NAT) has been widely implemented as an essential treatment to improve therapeutic efficacy in patients with locally-advanced cancer to reduce tumor burden and prolong survival, particularly for human epidermal growth receptor 2-positive and triple-negative breast cancer. The role of peripheral immune components in predicting therapeutic responses has received limited attention. Herein we determined the relationship between dynamic changes in peripheral immune indices and therapeutic responses during NAT administration.Peripheral immune index data were collected from 134 patients before and after NAT. Logistic regression and machine learning algorithms were applied to the feature selection and model construction processes, respectively.Peripheral immune status with a greater number of CD3+ T cells before and after NAT, and a greater number of CD8+ T cells, fewer CD4+ T cells, and fewer NK cells after NAT was significantly related to a pathological complete response (P < 0.05). The post-NAT NK cell-to-pre-NAT NK cell ratio was negatively correlated with the response to NAT (HR = 0.13, P = 0.008). Based on the results of logistic regression, 14 reliable features (P < 0.05) were selected to construct the machine learning model. The random forest model exhibited the best power to predict efficacy of NAT among 10 machine learning model approaches (AUC = 0.733).Statistically significant relationships between several specific immune indices and the efficacy of NAT were revealed. A random forest model based on dynamic changes in peripheral immune indices showed robust performance in predicting NAT efficacy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小水滴完成签到,获得积分20
刚刚
1秒前
1秒前
量子星尘发布了新的文献求助10
1秒前
ncjyl发布了新的文献求助10
1秒前
2秒前
伶俐乌完成签到 ,获得积分10
3秒前
在水一方应助研友_Z119gZ采纳,获得10
4秒前
科研通AI6应助答题不卡采纳,获得10
5秒前
韩擎宇发布了新的文献求助10
5秒前
jinghong发布了新的文献求助10
5秒前
6秒前
6秒前
安详的觅风完成签到,获得积分10
6秒前
8秒前
miraitowa发布了新的文献求助10
8秒前
靓丽幻梅发布了新的文献求助10
8秒前
小确幸完成签到,获得积分10
9秒前
小二郎应助三水采纳,获得10
10秒前
whisper发布了新的文献求助10
11秒前
11秒前
7十七发布了新的文献求助10
11秒前
11秒前
14秒前
14秒前
15秒前
Ginger完成签到,获得积分10
16秒前
ncjyl完成签到,获得积分10
16秒前
小确幸发布了新的文献求助10
17秒前
17秒前
浮游应助科研通管家采纳,获得10
18秒前
共享精神应助科研通管家采纳,获得10
18秒前
科研通AI5应助科研通管家采纳,获得10
18秒前
JamesPei应助科研通管家采纳,获得10
18秒前
星辰大海应助科研通管家采纳,获得10
18秒前
科研通AI6应助科研通管家采纳,获得10
18秒前
慕青应助科研通管家采纳,获得10
18秒前
18秒前
科研通AI6应助科研通管家采纳,获得10
18秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
2026国自然单细胞多组学大红书申报宝典 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4914824
求助须知:如何正确求助?哪些是违规求助? 4189010
关于积分的说明 13009694
捐赠科研通 3957961
什么是DOI,文献DOI怎么找? 2170035
邀请新用户注册赠送积分活动 1188261
关于科研通互助平台的介绍 1095917