A machine learning model to predict efficacy of neoadjuvant therapy in breast cancer based on dynamic changes in systemic immunity

免疫系统 纳特 乳腺癌 医学 逻辑回归 CD8型 肿瘤科 癌症 随机森林 外围设备 内科学 T细胞 机器学习 免疫学 计算机科学 计算机网络
作者
Yusong Wang,Mozhi Wang,Ke‐Da Yu,Shouping Xu,Pengfei Qiu,Zhidong Lyu,Mingke Cui,Qiang Zhang,Yingying Xu
出处
期刊:Cancer biology and medicine [Cancer Biology and Medicine]
卷期号:20 (3): 218-228 被引量:2
标识
DOI:10.20892/j.issn.2095-3941.2022.0513
摘要

Neoadjuvant therapy (NAT) has been widely implemented as an essential treatment to improve therapeutic efficacy in patients with locally-advanced cancer to reduce tumor burden and prolong survival, particularly for human epidermal growth receptor 2-positive and triple-negative breast cancer. The role of peripheral immune components in predicting therapeutic responses has received limited attention. Herein we determined the relationship between dynamic changes in peripheral immune indices and therapeutic responses during NAT administration.Peripheral immune index data were collected from 134 patients before and after NAT. Logistic regression and machine learning algorithms were applied to the feature selection and model construction processes, respectively.Peripheral immune status with a greater number of CD3+ T cells before and after NAT, and a greater number of CD8+ T cells, fewer CD4+ T cells, and fewer NK cells after NAT was significantly related to a pathological complete response (P < 0.05). The post-NAT NK cell-to-pre-NAT NK cell ratio was negatively correlated with the response to NAT (HR = 0.13, P = 0.008). Based on the results of logistic regression, 14 reliable features (P < 0.05) were selected to construct the machine learning model. The random forest model exhibited the best power to predict efficacy of NAT among 10 machine learning model approaches (AUC = 0.733).Statistically significant relationships between several specific immune indices and the efficacy of NAT were revealed. A random forest model based on dynamic changes in peripheral immune indices showed robust performance in predicting NAT efficacy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
高高行云完成签到 ,获得积分10
1秒前
1秒前
陈功发布了新的文献求助10
1秒前
一小位同学完成签到,获得积分10
3秒前
3秒前
3秒前
3秒前
咯咯哒1发布了新的文献求助10
3秒前
啦啦啦完成签到,获得积分10
5秒前
洞两发布了新的文献求助10
5秒前
5秒前
5秒前
bt4567发布了新的文献求助10
6秒前
秀丽静曼发布了新的文献求助10
6秒前
沉静的之桃完成签到 ,获得积分10
6秒前
6秒前
尼古拉斯佩奇完成签到,获得积分10
6秒前
彭于晏应助科研通管家采纳,获得10
7秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
思源应助科研通管家采纳,获得10
8秒前
wangxinji完成签到,获得积分10
8秒前
小青椒应助科研通管家采纳,获得200
8秒前
8秒前
ding应助科研通管家采纳,获得10
8秒前
彭于晏应助科研通管家采纳,获得10
8秒前
CYANjane应助科研通管家采纳,获得10
8秒前
NexusExplorer应助科研通管家采纳,获得10
8秒前
乐乐应助科研通管家采纳,获得10
8秒前
赘婿应助科研通管家采纳,获得10
8秒前
wanci应助科研通管家采纳,获得10
8秒前
隐形曼青应助科研通管家采纳,获得10
8秒前
所所应助科研通管家采纳,获得10
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
Frank应助科研通管家采纳,获得10
8秒前
ding应助科研通管家采纳,获得10
8秒前
qingmoheng应助科研通管家采纳,获得50
9秒前
斯文败类应助科研通管家采纳,获得10
9秒前
华仔应助科研通管家采纳,获得10
9秒前
wanci应助科研通管家采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5532022
求助须知:如何正确求助?哪些是违规求助? 4620823
关于积分的说明 14574972
捐赠科研通 4560552
什么是DOI,文献DOI怎么找? 2498894
邀请新用户注册赠送积分活动 1478828
关于科研通互助平台的介绍 1450125