A machine learning model to predict efficacy of neoadjuvant therapy in breast cancer based on dynamic changes in systemic immunity

免疫系统 纳特 乳腺癌 医学 逻辑回归 CD8型 肿瘤科 癌症 随机森林 外围设备 内科学 T细胞 机器学习 免疫学 计算机科学 计算机网络
作者
Yusong Wang,Mozhi Wang,Ke‐Da Yu,Shouping Xu,Pengfei Qiu,Zhidong Lyu,Mingke Cui,Qiang Zhang,Yingying Xu
出处
期刊:Cancer biology and medicine [Chinese Anti-Cancer Association]
卷期号:20 (3): 218-228 被引量:2
标识
DOI:10.20892/j.issn.2095-3941.2022.0513
摘要

Neoadjuvant therapy (NAT) has been widely implemented as an essential treatment to improve therapeutic efficacy in patients with locally-advanced cancer to reduce tumor burden and prolong survival, particularly for human epidermal growth receptor 2-positive and triple-negative breast cancer. The role of peripheral immune components in predicting therapeutic responses has received limited attention. Herein we determined the relationship between dynamic changes in peripheral immune indices and therapeutic responses during NAT administration.Peripheral immune index data were collected from 134 patients before and after NAT. Logistic regression and machine learning algorithms were applied to the feature selection and model construction processes, respectively.Peripheral immune status with a greater number of CD3+ T cells before and after NAT, and a greater number of CD8+ T cells, fewer CD4+ T cells, and fewer NK cells after NAT was significantly related to a pathological complete response (P < 0.05). The post-NAT NK cell-to-pre-NAT NK cell ratio was negatively correlated with the response to NAT (HR = 0.13, P = 0.008). Based on the results of logistic regression, 14 reliable features (P < 0.05) were selected to construct the machine learning model. The random forest model exhibited the best power to predict efficacy of NAT among 10 machine learning model approaches (AUC = 0.733).Statistically significant relationships between several specific immune indices and the efficacy of NAT were revealed. A random forest model based on dynamic changes in peripheral immune indices showed robust performance in predicting NAT efficacy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
容cc完成签到 ,获得积分10
2秒前
叶液发布了新的文献求助10
2秒前
2秒前
木偶关注了科研通微信公众号
3秒前
4秒前
佩佩发布了新的文献求助10
4秒前
Qingqing完成签到,获得积分10
4秒前
4秒前
假面超人发布了新的文献求助10
4秒前
遂安完成签到,获得积分10
4秒前
哇哇哇哇哇完成签到,获得积分10
5秒前
豆花发布了新的文献求助10
5秒前
学术宝马发布了新的文献求助10
6秒前
研友_VZG7GZ应助倾慕采纳,获得10
6秒前
xiaxue完成签到,获得积分10
7秒前
Ava应助李李李采纳,获得10
7秒前
7秒前
honghuxian发布了新的文献求助10
8秒前
汪美琪完成签到,获得积分10
8秒前
深情安青应助guozi采纳,获得10
8秒前
孤独巡礼完成签到 ,获得积分10
9秒前
绿豆蛙完成签到,获得积分10
10秒前
yan123发布了新的文献求助10
10秒前
小蘑菇应助科研通管家采纳,获得10
11秒前
理想国的过客完成签到,获得积分10
11秒前
大模型应助科研通管家采纳,获得10
11秒前
Rondab应助科研通管家采纳,获得10
11秒前
希望天下0贩的0应助SWJ采纳,获得10
11秒前
所所应助科研通管家采纳,获得10
12秒前
JamesPei应助科研通管家采纳,获得10
12秒前
12秒前
CipherSage应助科研通管家采纳,获得10
12秒前
12秒前
汉堡包应助科研通管家采纳,获得10
12秒前
12秒前
隐形曼青应助科研通管家采纳,获得30
12秒前
珈小羽完成签到,获得积分10
13秒前
lalala发布了新的文献求助10
13秒前
打打应助shinn采纳,获得10
14秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3969458
求助须知:如何正确求助?哪些是违规求助? 3514286
关于积分的说明 11173363
捐赠科研通 3249652
什么是DOI,文献DOI怎么找? 1794948
邀请新用户注册赠送积分活动 875501
科研通“疑难数据库(出版商)”最低求助积分说明 804836