A machine learning model to predict efficacy of neoadjuvant therapy in breast cancer based on dynamic changes in systemic immunity

免疫系统 纳特 乳腺癌 医学 逻辑回归 CD8型 肿瘤科 癌症 随机森林 外围设备 内科学 T细胞 机器学习 免疫学 计算机科学 计算机网络
作者
Yusong Wang,Mozhi Wang,Ke‐Da Yu,Shouping Xu,Pengfei Qiu,Zhidong Lyu,Mingke Cui,Qiang Zhang,Yingying Xu
出处
期刊:Cancer biology and medicine [Chinese Anti-Cancer Association]
卷期号:20 (3): 218-228 被引量:2
标识
DOI:10.20892/j.issn.2095-3941.2022.0513
摘要

Neoadjuvant therapy (NAT) has been widely implemented as an essential treatment to improve therapeutic efficacy in patients with locally-advanced cancer to reduce tumor burden and prolong survival, particularly for human epidermal growth receptor 2-positive and triple-negative breast cancer. The role of peripheral immune components in predicting therapeutic responses has received limited attention. Herein we determined the relationship between dynamic changes in peripheral immune indices and therapeutic responses during NAT administration.Peripheral immune index data were collected from 134 patients before and after NAT. Logistic regression and machine learning algorithms were applied to the feature selection and model construction processes, respectively.Peripheral immune status with a greater number of CD3+ T cells before and after NAT, and a greater number of CD8+ T cells, fewer CD4+ T cells, and fewer NK cells after NAT was significantly related to a pathological complete response (P < 0.05). The post-NAT NK cell-to-pre-NAT NK cell ratio was negatively correlated with the response to NAT (HR = 0.13, P = 0.008). Based on the results of logistic regression, 14 reliable features (P < 0.05) were selected to construct the machine learning model. The random forest model exhibited the best power to predict efficacy of NAT among 10 machine learning model approaches (AUC = 0.733).Statistically significant relationships between several specific immune indices and the efficacy of NAT were revealed. A random forest model based on dynamic changes in peripheral immune indices showed robust performance in predicting NAT efficacy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刘洋发布了新的文献求助10
刚刚
刚刚
笨笨西牛发布了新的文献求助10
刚刚
jy完成签到 ,获得积分10
1秒前
to高坚果发布了新的文献求助10
1秒前
passerby发布了新的文献求助10
2秒前
2秒前
pdx666完成签到,获得积分10
4秒前
丘比特应助缪伟采纳,获得10
4秒前
JXY完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
5秒前
知名不具发布了新的文献求助10
5秒前
赫连烙发布了新的文献求助10
6秒前
笑点低的秋蝶完成签到,获得积分10
7秒前
叮叮当当发布了新的文献求助30
8秒前
8秒前
ying完成签到,获得积分10
8秒前
dopamine发布了新的文献求助10
9秒前
麦乐迪应助圆圆采纳,获得10
10秒前
11秒前
幼儿园老大完成签到,获得积分10
11秒前
infe完成签到,获得积分10
11秒前
高高完成签到,获得积分10
11秒前
可爱问寒完成签到 ,获得积分20
12秒前
乘乘完成签到 ,获得积分10
13秒前
Syanyi完成签到 ,获得积分10
13秒前
13秒前
13秒前
领导范儿应助宁阿霜采纳,获得10
15秒前
知名不具发布了新的文献求助10
17秒前
17秒前
17秒前
小二郎应助称心的寄风采纳,获得10
18秒前
荼蘼发布了新的文献求助10
18秒前
吱吱吱完成签到 ,获得积分10
18秒前
Qianwen发布了新的文献求助10
19秒前
VDC应助虚心的芹采纳,获得30
19秒前
19秒前
高兴的又菡完成签到,获得积分10
20秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4577935
求助须知:如何正确求助?哪些是违规求助? 3997037
关于积分的说明 12374100
捐赠科研通 3671042
什么是DOI,文献DOI怎么找? 2023214
邀请新用户注册赠送积分活动 1057205
科研通“疑难数据库(出版商)”最低求助积分说明 944176