A machine learning model to predict efficacy of neoadjuvant therapy in breast cancer based on dynamic changes in systemic immunity

免疫系统 纳特 乳腺癌 医学 逻辑回归 CD8型 肿瘤科 癌症 随机森林 外围设备 内科学 T细胞 机器学习 免疫学 计算机科学 计算机网络
作者
Yusong Wang,Mozhi Wang,Ke‐Da Yu,Shouping Xu,Pengfei Qiu,Zhidong Lyu,Mingke Cui,Qiang Zhang,Yingying Xu
出处
期刊:Cancer biology and medicine [Chinese Anti-Cancer Association]
卷期号:20 (3): 218-228 被引量:2
标识
DOI:10.20892/j.issn.2095-3941.2022.0513
摘要

Neoadjuvant therapy (NAT) has been widely implemented as an essential treatment to improve therapeutic efficacy in patients with locally-advanced cancer to reduce tumor burden and prolong survival, particularly for human epidermal growth receptor 2-positive and triple-negative breast cancer. The role of peripheral immune components in predicting therapeutic responses has received limited attention. Herein we determined the relationship between dynamic changes in peripheral immune indices and therapeutic responses during NAT administration.Peripheral immune index data were collected from 134 patients before and after NAT. Logistic regression and machine learning algorithms were applied to the feature selection and model construction processes, respectively.Peripheral immune status with a greater number of CD3+ T cells before and after NAT, and a greater number of CD8+ T cells, fewer CD4+ T cells, and fewer NK cells after NAT was significantly related to a pathological complete response (P < 0.05). The post-NAT NK cell-to-pre-NAT NK cell ratio was negatively correlated with the response to NAT (HR = 0.13, P = 0.008). Based on the results of logistic regression, 14 reliable features (P < 0.05) were selected to construct the machine learning model. The random forest model exhibited the best power to predict efficacy of NAT among 10 machine learning model approaches (AUC = 0.733).Statistically significant relationships between several specific immune indices and the efficacy of NAT were revealed. A random forest model based on dynamic changes in peripheral immune indices showed robust performance in predicting NAT efficacy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陆晓亦完成签到,获得积分10
刚刚
乐观的觅松完成签到,获得积分10
刚刚
2023204306324发布了新的文献求助10
1秒前
2秒前
端己完成签到,获得积分20
2秒前
3秒前
阿湫发布了新的文献求助10
3秒前
4秒前
4秒前
坤坤完成签到,获得积分10
4秒前
5秒前
STUSSY完成签到,获得积分10
5秒前
wuhuofeng发布了新的文献求助10
6秒前
7秒前
8秒前
8秒前
coco完成签到,获得积分10
9秒前
lshao完成签到 ,获得积分10
10秒前
10秒前
zhou发布了新的文献求助30
11秒前
跋扈完成签到,获得积分10
13秒前
温柔翰发布了新的文献求助10
13秒前
13秒前
Jj发布了新的文献求助10
14秒前
ficus_min发布了新的文献求助10
14秒前
木子发布了新的文献求助10
15秒前
Galato发布了新的文献求助10
15秒前
寒冷哈密瓜完成签到 ,获得积分0
15秒前
大模型应助shen采纳,获得10
16秒前
123566完成签到,获得积分10
16秒前
hohn完成签到,获得积分10
16秒前
科研通AI2S应助bsn采纳,获得10
18秒前
LL发布了新的文献求助10
18秒前
张西西完成签到 ,获得积分10
19秒前
研友_ZAxj7n完成签到,获得积分20
21秒前
海上钢琴家完成签到,获得积分10
21秒前
日富一日完成签到,获得积分10
21秒前
大妙妙完成签到 ,获得积分10
21秒前
1111完成签到 ,获得积分10
22秒前
zhong完成签到,获得积分10
22秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038524
求助须知:如何正确求助?哪些是违规求助? 3576221
关于积分的说明 11374737
捐赠科研通 3305912
什么是DOI,文献DOI怎么找? 1819354
邀请新用户注册赠送积分活动 892688
科研通“疑难数据库(出版商)”最低求助积分说明 815048