已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A machine learning model to predict efficacy of neoadjuvant therapy in breast cancer based on dynamic changes in systemic immunity

免疫系统 纳特 乳腺癌 医学 逻辑回归 CD8型 肿瘤科 癌症 随机森林 外围设备 内科学 T细胞 机器学习 免疫学 计算机科学 计算机网络
作者
Yusong Wang,Mozhi Wang,Ke‐Da Yu,Shouping Xu,Pengfei Qiu,Zhidong Lyu,Mingke Cui,Qiang Zhang,Yingying Xu
出处
期刊:Cancer biology and medicine [Cancer Biology and Medicine]
卷期号:20 (3): 218-228 被引量:2
标识
DOI:10.20892/j.issn.2095-3941.2022.0513
摘要

Neoadjuvant therapy (NAT) has been widely implemented as an essential treatment to improve therapeutic efficacy in patients with locally-advanced cancer to reduce tumor burden and prolong survival, particularly for human epidermal growth receptor 2-positive and triple-negative breast cancer. The role of peripheral immune components in predicting therapeutic responses has received limited attention. Herein we determined the relationship between dynamic changes in peripheral immune indices and therapeutic responses during NAT administration.Peripheral immune index data were collected from 134 patients before and after NAT. Logistic regression and machine learning algorithms were applied to the feature selection and model construction processes, respectively.Peripheral immune status with a greater number of CD3+ T cells before and after NAT, and a greater number of CD8+ T cells, fewer CD4+ T cells, and fewer NK cells after NAT was significantly related to a pathological complete response (P < 0.05). The post-NAT NK cell-to-pre-NAT NK cell ratio was negatively correlated with the response to NAT (HR = 0.13, P = 0.008). Based on the results of logistic regression, 14 reliable features (P < 0.05) were selected to construct the machine learning model. The random forest model exhibited the best power to predict efficacy of NAT among 10 machine learning model approaches (AUC = 0.733).Statistically significant relationships between several specific immune indices and the efficacy of NAT were revealed. A random forest model based on dynamic changes in peripheral immune indices showed robust performance in predicting NAT efficacy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕青应助Aokcers采纳,获得10
3秒前
YAN完成签到 ,获得积分10
3秒前
浮游应助sentimental采纳,获得10
4秒前
YUkiii完成签到,获得积分10
4秒前
雨下整夜完成签到,获得积分10
6秒前
6秒前
桐桐应助和谐又菡采纳,获得10
6秒前
炙热的小小完成签到 ,获得积分10
6秒前
SciGPT应助百杜采纳,获得10
7秒前
Criminology34应助毛月月采纳,获得10
7秒前
9秒前
爱笑的如霜完成签到,获得积分20
10秒前
学术五车发布了新的文献求助10
11秒前
12秒前
拾肆发布了新的文献求助10
12秒前
在下天池宫人间行走完成签到,获得积分10
12秒前
YUkiii发布了新的文献求助10
13秒前
13秒前
zai发布了新的文献求助10
13秒前
14秒前
14秒前
微笑的井完成签到 ,获得积分10
15秒前
暗中讨饭完成签到 ,获得积分10
15秒前
15秒前
15秒前
11完成签到 ,获得积分10
15秒前
Aokcers发布了新的文献求助10
17秒前
18秒前
dongdong发布了新的文献求助10
20秒前
科研通AI6应助彪壮的凡波采纳,获得10
20秒前
小王同学应助blue采纳,获得20
21秒前
21秒前
隐形曼青应助Wenyilong采纳,获得10
22秒前
22秒前
22秒前
cjg完成签到,获得积分10
23秒前
24秒前
华仔哈哈哈哈哈完成签到,获得积分10
24秒前
EvaHo完成签到,获得积分10
26秒前
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 1000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5355699
求助须知:如何正确求助?哪些是违规求助? 4487559
关于积分的说明 13970591
捐赠科研通 4388263
什么是DOI,文献DOI怎么找? 2410970
邀请新用户注册赠送积分活动 1403518
关于科研通互助平台的介绍 1377055