A machine learning model to predict efficacy of neoadjuvant therapy in breast cancer based on dynamic changes in systemic immunity

免疫系统 纳特 乳腺癌 医学 逻辑回归 CD8型 肿瘤科 癌症 随机森林 外围设备 内科学 T细胞 机器学习 免疫学 计算机科学 计算机网络
作者
Yusong Wang,Mozhi Wang,Ke‐Da Yu,Shouping Xu,Pengfei Qiu,Zhidong Lyu,Mingke Cui,Qiang Zhang,Yingying Xu
出处
期刊:Cancer biology and medicine [Chinese Anti-Cancer Association]
卷期号:20 (3): 218-228 被引量:2
标识
DOI:10.20892/j.issn.2095-3941.2022.0513
摘要

Neoadjuvant therapy (NAT) has been widely implemented as an essential treatment to improve therapeutic efficacy in patients with locally-advanced cancer to reduce tumor burden and prolong survival, particularly for human epidermal growth receptor 2-positive and triple-negative breast cancer. The role of peripheral immune components in predicting therapeutic responses has received limited attention. Herein we determined the relationship between dynamic changes in peripheral immune indices and therapeutic responses during NAT administration.Peripheral immune index data were collected from 134 patients before and after NAT. Logistic regression and machine learning algorithms were applied to the feature selection and model construction processes, respectively.Peripheral immune status with a greater number of CD3+ T cells before and after NAT, and a greater number of CD8+ T cells, fewer CD4+ T cells, and fewer NK cells after NAT was significantly related to a pathological complete response (P < 0.05). The post-NAT NK cell-to-pre-NAT NK cell ratio was negatively correlated with the response to NAT (HR = 0.13, P = 0.008). Based on the results of logistic regression, 14 reliable features (P < 0.05) were selected to construct the machine learning model. The random forest model exhibited the best power to predict efficacy of NAT among 10 machine learning model approaches (AUC = 0.733).Statistically significant relationships between several specific immune indices and the efficacy of NAT were revealed. A random forest model based on dynamic changes in peripheral immune indices showed robust performance in predicting NAT efficacy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
彭于晏应助Mason采纳,获得10
1秒前
跳跃太清完成签到 ,获得积分10
2秒前
2秒前
2秒前
害羞映容发布了新的文献求助10
3秒前
3秒前
4秒前
滴滴答答完成签到 ,获得积分10
5秒前
cgsatm发布了新的文献求助10
5秒前
5秒前
百里幻竹发布了新的文献求助10
5秒前
6秒前
英吉利25发布了新的文献求助10
6秒前
骨科AAA完成签到,获得积分10
7秒前
xingsixs发布了新的文献求助10
7秒前
Ultraman45发布了新的文献求助10
8秒前
暴躁小刺猬完成签到,获得积分10
8秒前
蒋瑞轩发布了新的文献求助10
9秒前
10秒前
Snieno发布了新的文献求助10
10秒前
夹子方糖发布了新的文献求助10
11秒前
大模型应助kuokyt采纳,获得10
11秒前
nefu biology发布了新的文献求助10
11秒前
大鸡腿完成签到,获得积分10
11秒前
14秒前
19秒前
英俊的咖啡豆完成签到 ,获得积分10
19秒前
jjx1005完成签到 ,获得积分10
21秒前
阿海发布了新的文献求助10
21秒前
正反馈完成签到,获得积分20
22秒前
22秒前
大鸡腿发布了新的文献求助10
23秒前
23秒前
骨科AAA发布了新的文献求助10
24秒前
MYC007完成签到 ,获得积分10
24秒前
25秒前
xiaofeiyan发布了新的文献求助10
27秒前
兴奋雁蓉发布了新的文献求助10
28秒前
星辰大海应助太叔明辉采纳,获得10
30秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3976253
求助须知:如何正确求助?哪些是违规求助? 3520405
关于积分的说明 11203301
捐赠科研通 3257028
什么是DOI,文献DOI怎么找? 1798589
邀请新用户注册赠送积分活动 877755
科研通“疑难数据库(出版商)”最低求助积分说明 806521