The use of radiomics and machine learning for the differentiation of chondrosarcoma from enchondroma

内生软骨瘤 医学 人工智能 软骨肉瘤 接收机工作特性 卷积神经网络 放射科 磁共振成像 模式识别(心理学) 人工神经网络 计算机科学 机器学习 内科学
作者
Fatih Erdem,İpek Tamsel,Gülen Demirpolat
出处
期刊:Journal of Clinical Ultrasound [Wiley]
卷期号:51 (6): 1027-1035 被引量:5
标识
DOI:10.1002/jcu.23461
摘要

Abstract Purpose To construct and compare machine learning models for differentiating chondrosarcoma from enchondroma using radiomic features from T1 and fat suppressed Proton density (PD) magnetic resonance imaging (MRI). Methods Eighty‐eight patients (57 with enchondroma, 31 with chondrosarcoma) were retrospectively included. Histogram matching and N4ITK MRI bias correction filters were applied. An experienced musculoskeletal radiologist and a senior resident in radiology performed manual segmentation. Voxel sizes were resampled. Laplacian of Gaussian filter and wavelet‐based features were used. One thousand eight hundred eighty‐eight features were obtained for each patient, with 944 from T1 and 944 from PD images. Sixty‐four unstable features were removed. Seven machine learning models were used for classification. Results Classification with all features showed neural network was the best model for both readers' datasets with area under the curve (AUC), classification accuracy (CA), and F1 score of 0.979, 0.984; 0.920, 0.932; and 0.889, 0.903, respectively. Four features, including one common to both readers, were selected using fast correlation based filter. The best performing models with selected features were gradient boosting for Fatih Erdem's dataset and neural network for Gülen Demirpolat's dataset with AUC, CA, and F1 score of 0.990, 0.979; 0.943, 0.955; 0.921, 0.933, respectively. Neural Network was the second‐best model for FE's dataset based on AUC (0.984). Conclusion Using pathology as a gold standard, this study defined and compared seven well‐performing models to distinguish enchondromas from chondrosarcomas and provided radiomic feature stability and reproducibility among the readers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
JJG完成签到,获得积分20
3秒前
Hello应助Tiam采纳,获得10
4秒前
4秒前
ty完成签到,获得积分10
6秒前
zehua309完成签到,获得积分10
7秒前
火星上含芙完成签到 ,获得积分10
8秒前
量子星尘发布了新的文献求助10
10秒前
10秒前
掌门发布了新的文献求助10
10秒前
愉快的花卷完成签到,获得积分10
10秒前
少言完成签到,获得积分10
12秒前
kiko完成签到,获得积分10
13秒前
隐形惜筠完成签到 ,获得积分10
15秒前
黑眼圈完成签到,获得积分10
19秒前
123发布了新的文献求助10
21秒前
22秒前
23秒前
又又妈妈完成签到,获得积分10
23秒前
欢呼的丁真完成签到,获得积分10
24秒前
ty发布了新的文献求助10
24秒前
Faded完成签到 ,获得积分10
25秒前
ding应助Amorfati采纳,获得10
25秒前
好好学习天天向上完成签到,获得积分10
26秒前
所所应助lh采纳,获得10
27秒前
李爱国应助深情丸子采纳,获得10
27秒前
烟花应助阿湫采纳,获得10
27秒前
27秒前
乌梅不乌发布了新的文献求助10
28秒前
28秒前
YY完成签到,获得积分10
29秒前
30秒前
30秒前
Tiam发布了新的文献求助10
30秒前
种花家的狗狗完成签到,获得积分10
30秒前
wisdom完成签到,获得积分10
30秒前
123完成签到,获得积分10
31秒前
温暖芸完成签到,获得积分10
31秒前
32秒前
认真的觅松完成签到 ,获得积分10
33秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038524
求助须知:如何正确求助?哪些是违规求助? 3576221
关于积分的说明 11374737
捐赠科研通 3305912
什么是DOI,文献DOI怎么找? 1819354
邀请新用户注册赠送积分活动 892688
科研通“疑难数据库(出版商)”最低求助积分说明 815048