The use of radiomics and machine learning for the differentiation of chondrosarcoma from enchondroma

内生软骨瘤 医学 人工智能 软骨肉瘤 接收机工作特性 卷积神经网络 放射科 磁共振成像 模式识别(心理学) 人工神经网络 计算机科学 机器学习 内科学
作者
Fatih Erdem,İpek Tamsel,Gülen Demirpolat
出处
期刊:Journal of Clinical Ultrasound [Wiley]
卷期号:51 (6): 1027-1035 被引量:5
标识
DOI:10.1002/jcu.23461
摘要

Abstract Purpose To construct and compare machine learning models for differentiating chondrosarcoma from enchondroma using radiomic features from T1 and fat suppressed Proton density (PD) magnetic resonance imaging (MRI). Methods Eighty‐eight patients (57 with enchondroma, 31 with chondrosarcoma) were retrospectively included. Histogram matching and N4ITK MRI bias correction filters were applied. An experienced musculoskeletal radiologist and a senior resident in radiology performed manual segmentation. Voxel sizes were resampled. Laplacian of Gaussian filter and wavelet‐based features were used. One thousand eight hundred eighty‐eight features were obtained for each patient, with 944 from T1 and 944 from PD images. Sixty‐four unstable features were removed. Seven machine learning models were used for classification. Results Classification with all features showed neural network was the best model for both readers' datasets with area under the curve (AUC), classification accuracy (CA), and F1 score of 0.979, 0.984; 0.920, 0.932; and 0.889, 0.903, respectively. Four features, including one common to both readers, were selected using fast correlation based filter. The best performing models with selected features were gradient boosting for Fatih Erdem's dataset and neural network for Gülen Demirpolat's dataset with AUC, CA, and F1 score of 0.990, 0.979; 0.943, 0.955; 0.921, 0.933, respectively. Neural Network was the second‐best model for FE's dataset based on AUC (0.984). Conclusion Using pathology as a gold standard, this study defined and compared seven well‐performing models to distinguish enchondromas from chondrosarcomas and provided radiomic feature stability and reproducibility among the readers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
彭于晏应助hewd3采纳,获得10
3秒前
popvich应助Azlne采纳,获得10
3秒前
wanci应助科研通管家采纳,获得10
4秒前
李健应助科研通管家采纳,获得10
4秒前
干饭虫应助科研通管家采纳,获得10
4秒前
Rita应助科研通管家采纳,获得10
4秒前
英姑应助科研通管家采纳,获得10
4秒前
干饭虫应助科研通管家采纳,获得10
4秒前
干饭虫应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
5秒前
杨好圆完成签到,获得积分10
5秒前
5秒前
英俊的幻天完成签到,获得积分10
8秒前
smart发布了新的文献求助10
9秒前
9秒前
慕青应助时有落花至采纳,获得10
10秒前
10秒前
陈欣发布了新的文献求助10
10秒前
背后夜蓉发布了新的文献求助10
11秒前
Orange应助xixi采纳,获得10
12秒前
chowjb完成签到,获得积分10
14秒前
占囧发布了新的文献求助30
14秒前
务实青筠完成签到 ,获得积分10
14秒前
龙舞星完成签到,获得积分10
16秒前
默默完成签到,获得积分10
16秒前
卷卷完成签到,获得积分10
17秒前
香蕉觅云应助vivi采纳,获得10
17秒前
xxme77发布了新的文献求助10
17秒前
思源应助CY采纳,获得10
17秒前
17秒前
smart完成签到,获得积分10
17秒前
VDC应助朱珏虹采纳,获得30
19秒前
19秒前
11关注了科研通微信公众号
20秒前
浮游应助daydream采纳,获得10
20秒前
祁乾完成签到 ,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4979699
求助须知:如何正确求助?哪些是违规求助? 4232313
关于积分的说明 13183302
捐赠科研通 4023465
什么是DOI,文献DOI怎么找? 2201316
邀请新用户注册赠送积分活动 1213777
关于科研通互助平台的介绍 1130020