The use of radiomics and machine learning for the differentiation of chondrosarcoma from enchondroma

内生软骨瘤 医学 人工智能 软骨肉瘤 接收机工作特性 卷积神经网络 放射科 磁共振成像 模式识别(心理学) 人工神经网络 计算机科学 机器学习 内科学
作者
Fatih Erdem,İpek Tamsel,Gülen Demirpolat
出处
期刊:Journal of Clinical Ultrasound [Wiley]
卷期号:51 (6): 1027-1035 被引量:5
标识
DOI:10.1002/jcu.23461
摘要

Abstract Purpose To construct and compare machine learning models for differentiating chondrosarcoma from enchondroma using radiomic features from T1 and fat suppressed Proton density (PD) magnetic resonance imaging (MRI). Methods Eighty‐eight patients (57 with enchondroma, 31 with chondrosarcoma) were retrospectively included. Histogram matching and N4ITK MRI bias correction filters were applied. An experienced musculoskeletal radiologist and a senior resident in radiology performed manual segmentation. Voxel sizes were resampled. Laplacian of Gaussian filter and wavelet‐based features were used. One thousand eight hundred eighty‐eight features were obtained for each patient, with 944 from T1 and 944 from PD images. Sixty‐four unstable features were removed. Seven machine learning models were used for classification. Results Classification with all features showed neural network was the best model for both readers' datasets with area under the curve (AUC), classification accuracy (CA), and F1 score of 0.979, 0.984; 0.920, 0.932; and 0.889, 0.903, respectively. Four features, including one common to both readers, were selected using fast correlation based filter. The best performing models with selected features were gradient boosting for Fatih Erdem's dataset and neural network for Gülen Demirpolat's dataset with AUC, CA, and F1 score of 0.990, 0.979; 0.943, 0.955; 0.921, 0.933, respectively. Neural Network was the second‐best model for FE's dataset based on AUC (0.984). Conclusion Using pathology as a gold standard, this study defined and compared seven well‐performing models to distinguish enchondromas from chondrosarcomas and provided radiomic feature stability and reproducibility among the readers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lalala发布了新的文献求助20
刚刚
1秒前
Ale发布了新的文献求助10
1秒前
1秒前
许安完成签到,获得积分10
1秒前
2秒前
李爱国应助blackcatcaptain采纳,获得10
2秒前
就是嘀咕完成签到,获得积分10
2秒前
sssssssss完成签到,获得积分10
3秒前
过时的不愁完成签到,获得积分10
3秒前
逢陈发布了新的文献求助10
4秒前
zj发布了新的文献求助10
4秒前
4秒前
dwls完成签到,获得积分10
5秒前
隐形曼青应助Ale采纳,获得10
5秒前
SciGPT应助水果采纳,获得30
6秒前
6秒前
NexusExplorer应助勤劳的音响采纳,获得10
7秒前
彭于晏应助朽木采纳,获得10
7秒前
ppll3906发布了新的文献求助10
7秒前
8秒前
安安发布了新的文献求助10
8秒前
8秒前
8秒前
9秒前
整齐思天发布了新的文献求助10
10秒前
10秒前
11秒前
11秒前
Orange应助天易车网官网采纳,获得20
11秒前
FashionBoy应助落后的采波采纳,获得10
12秒前
Yelicious发布了新的文献求助10
12秒前
12秒前
12秒前
hyy发布了新的文献求助10
13秒前
逢陈完成签到,获得积分10
13秒前
14秒前
天真的不尤完成签到 ,获得积分10
14秒前
14秒前
至此发布了新的文献求助10
15秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Effective Learning and Mental Wellbeing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3975165
求助须知:如何正确求助?哪些是违规求助? 3519595
关于积分的说明 11198781
捐赠科研通 3255912
什么是DOI,文献DOI怎么找? 1798001
邀请新用户注册赠送积分活动 877343
科研通“疑难数据库(出版商)”最低求助积分说明 806298