An efficient online citrus counting system for large‐scale unstructured orchards based on the unmanned aerial vehicle

果园 计算机科学 管道(软件) 背景(考古学) 比例(比率) 计算机视觉 人工智能 实时计算 地理 地图学 生物 园艺 考古 程序设计语言
作者
Zhenhui Zheng,Juntao Xiong,Xiao Wang,Zexing Li,Qiyin Huang,Hao Chen,Yonglin Han
出处
期刊:Journal of Field Robotics [Wiley]
卷期号:40 (3): 552-573 被引量:10
标识
DOI:10.1002/rob.22147
摘要

Abstract The accurate detection and counting of fruits in natural environments are key steps for the early yield estimation of orchards and the realization of smart orchard production management. However, existing citrus counting algorithms have two primary limitations: the performance of counting algorithms needs to be improved, and their system operation efficiency is low in practical applications. Therefore, in this paper, we propose a novel end‐to‐end orchard fruit counting pipeline that can be used by multiple unmanned aerial vehicles (UAVs) in parallel to help overcome the above problems. First, to obtain on‐board camera images online, an innovative UAV live broadcast platform was developed for the orchard scene. Second, for this challenging specific scene, a detection network named Citrus‐YOLO was designed to detect fruits in the video stream in real‐time. Then, the DeepSort algorithm was used to assign a specific ID to each citrus fruit in the online UAV scene and track the fruits across video frames. Finally, a nonuniform distributed counter was proposed to correct the fruit count during the tracking process, and this can significantly reduce the counting errors caused by tracking failure. This is the first work to realize online and end‐to‐end counting in a field orchard environment. The experimental results show that the F1 score and mean absolute percentage error of the method are 89.07% and 12.75%, respectively, indicating that the system can quickly and accurately achieve fruit counting in large‐scale unstructured citrus orchards. Although our work is discussed in the context of fruit counting, it can be extended to the detection, tracking and counting of a variety of other objects of interest in UAV application scenarios
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
songyuan完成签到,获得积分10
2秒前
Amazing发布了新的文献求助10
2秒前
2秒前
nini发布了新的文献求助20
3秒前
小底完成签到,获得积分10
3秒前
3秒前
waikeyan发布了新的文献求助10
4秒前
善学以致用应助美好山槐采纳,获得10
4秒前
吃不饱星球球长应助5L采纳,获得10
4秒前
河马发布了新的文献求助10
4秒前
缓慢平蓝完成签到,获得积分10
5秒前
5秒前
尊敬的小蚂蚁关注了科研通微信公众号
6秒前
图里琛发布了新的文献求助10
6秒前
西西完成签到,获得积分10
6秒前
大个应助猪猪侠采纳,获得10
6秒前
ding应助rr采纳,获得10
6秒前
dark完成签到,获得积分10
6秒前
7秒前
qingli完成签到,获得积分10
8秒前
RebeccaHe应助西柚芝士茉莉采纳,获得20
8秒前
小丛雨完成签到,获得积分10
9秒前
ding应助肚子饿了采纳,获得10
9秒前
李爱国应助Jenlisa采纳,获得10
9秒前
科目三应助科研通管家采纳,获得10
9秒前
斯文败类应助科研通管家采纳,获得10
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
Lucas应助夜洛乌泽采纳,获得10
10秒前
10秒前
Orange应助微风418采纳,获得10
10秒前
Singularity应助科研通管家采纳,获得10
10秒前
上官若男应助科研通管家采纳,获得10
11秒前
11秒前
丘比特应助琪音_xy采纳,获得10
11秒前
脑洞疼应助子不语采纳,获得10
11秒前
姚美阁完成签到 ,获得积分10
11秒前
11秒前
苻人英完成签到,获得积分10
11秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
Manual of Sewer Condition Classification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3123390
求助须知:如何正确求助?哪些是违规求助? 2773951
关于积分的说明 7720148
捐赠科研通 2429656
什么是DOI,文献DOI怎么找? 1290409
科研通“疑难数据库(出版商)”最低求助积分说明 621833
版权声明 600251