All-temperature zinc batteries with high-entropy aqueous electrolyte

电解质 水溶液 法拉第效率 溶剂化 材料科学 储能 电化学窗口 无机化学 离子 化学工程 化学 离子电导率 热力学 有机化学 工程类 物理化学 电极 功率(物理) 物理
作者
Chongyin Yang,Jiale Xia,Chunyu Cui,Travis P. Pollard,Jenel Vatamanu,Antonio Faraone,Joseph A. Dura,Madhusudan Tyagi,Alex Kattan,Elijah Thimsen,Feng Xu,Wentao Song,Enyuan Hu,Xiao Ji,Singyuk Hou,Xiyue Zhang,Michael S. Ding,Sooyeon Hwang,Dong Su,Yang Ren
出处
期刊:Nature sustainability [Springer Nature]
卷期号:6 (3): 325-335 被引量:350
标识
DOI:10.1038/s41893-022-01028-x
摘要

Electrification of transportation and rising demand for grid energy storage continue to build momentum around batteries across the globe. However, the supply chain of Li-ion batteries is exposed to the increasing challenges of resourcing essential and scarce materials. Therefore, incentives to develop more sustainable battery chemistries are growing. Here we show an aqueous ZnCl2 electrolyte with introduced LiCl as supporting salt. Once the electrolyte is optimized to Li2ZnCl4⋅9H2O, the assembled Zn–air battery can sustain stable cycling over the course of 800 hours at a current density of 0.4 mA cm−2 between −60 °C and +80 °C, with 100% Coulombic efficiency for Zn stripping/plating. Even at −60 °C, >80% of room-temperature power density can be retained. Advanced characterization and theoretical calculations reveal a high-entropy solvation structure that is responsible for the excellent performance. The strong acidity allows ZnCl2 to accept donated Cl− ions to form ZnCl42− anions, while water molecules remain within the free solvent network at low salt concentration or coordinate with Li ions. Our work suggests an effective strategy for the rational design of electrolytes that could enable next-generation Zn batteries. Zinc batteries are receiving growing attention due to their sustainability merits not shared by lithium-ion technologies. Here the aqueous electrolyte design features unique solvation structures that render Zn–air pouch cell excellent cycling stability in a wide temperature range from −60 to 80 °C.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
852应助钟迪采纳,获得10
刚刚
贝拉发布了新的文献求助10
刚刚
刚刚
1秒前
1秒前
1秒前
冷傲半邪完成签到,获得积分10
2秒前
温十一应助asdaddad采纳,获得10
2秒前
灵巧书蝶完成签到,获得积分20
2秒前
Danielle完成签到,获得积分10
2秒前
myc641发布了新的文献求助10
2秒前
浮游应助dkxy采纳,获得10
2秒前
2秒前
3秒前
领导范儿应助zyl采纳,获得10
3秒前
zhengzengpeng发布了新的文献求助10
4秒前
所所应助啦啦啦采纳,获得30
4秒前
小张完成签到,获得积分10
4秒前
zhichao完成签到 ,获得积分10
5秒前
拉长的远山完成签到,获得积分10
5秒前
灵巧书蝶发布了新的文献求助10
5秒前
武明进完成签到,获得积分10
5秒前
5秒前
知性的咖啡豆完成签到,获得积分10
6秒前
清平调发布了新的文献求助10
6秒前
淡定树叶完成签到,获得积分10
6秒前
xzm完成签到,获得积分10
6秒前
淡淡追命发布了新的文献求助20
6秒前
阿呷永黎发布了新的文献求助10
6秒前
6秒前
张小哥12发布了新的文献求助10
7秒前
7秒前
8秒前
cc发布了新的文献求助30
8秒前
9秒前
三虎科研完成签到,获得积分10
9秒前
布里田完成签到 ,获得积分10
9秒前
9秒前
Suttier发布了新的文献求助10
10秒前
爱学数学的数学小白完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5505946
求助须知:如何正确求助?哪些是违规求助? 4601465
关于积分的说明 14476523
捐赠科研通 4535397
什么是DOI,文献DOI怎么找? 2485351
邀请新用户注册赠送积分活动 1468337
关于科研通互助平台的介绍 1440869