All-temperature zinc batteries with high-entropy aqueous electrolyte

电解质 水溶液 法拉第效率 溶剂化 材料科学 储能 电化学窗口 无机化学 离子 化学工程 化学 离子电导率 热力学 有机化学 工程类 物理化学 电极 功率(物理) 物理
作者
Chongyin Yang,Jiale Xia,Chunyu Cui,Travis P. Pollard,Jenel Vatamanu,Antonio Faraone,Joseph A. Dura,Madhusudan Tyagi,Alex Kattan,Elijah Thimsen,Feng Xu,Wentao Song,Enyuan Hu,Xiao Ji,Singyuk Hou,Xiyue Zhang,Michael S. Ding,Sooyeon Hwang,Dong Su,Yang Ren
出处
期刊:Nature sustainability [Springer Nature]
卷期号:6 (3): 325-335 被引量:338
标识
DOI:10.1038/s41893-022-01028-x
摘要

Electrification of transportation and rising demand for grid energy storage continue to build momentum around batteries across the globe. However, the supply chain of Li-ion batteries is exposed to the increasing challenges of resourcing essential and scarce materials. Therefore, incentives to develop more sustainable battery chemistries are growing. Here we show an aqueous ZnCl2 electrolyte with introduced LiCl as supporting salt. Once the electrolyte is optimized to Li2ZnCl4⋅9H2O, the assembled Zn–air battery can sustain stable cycling over the course of 800 hours at a current density of 0.4 mA cm−2 between −60 °C and +80 °C, with 100% Coulombic efficiency for Zn stripping/plating. Even at −60 °C, >80% of room-temperature power density can be retained. Advanced characterization and theoretical calculations reveal a high-entropy solvation structure that is responsible for the excellent performance. The strong acidity allows ZnCl2 to accept donated Cl− ions to form ZnCl42− anions, while water molecules remain within the free solvent network at low salt concentration or coordinate with Li ions. Our work suggests an effective strategy for the rational design of electrolytes that could enable next-generation Zn batteries. Zinc batteries are receiving growing attention due to their sustainability merits not shared by lithium-ion technologies. Here the aqueous electrolyte design features unique solvation structures that render Zn–air pouch cell excellent cycling stability in a wide temperature range from −60 to 80 °C.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
水蓝丨剑月完成签到,获得积分10
刚刚
1秒前
2秒前
不住发布了新的文献求助10
5秒前
金jinjin完成签到,获得积分10
5秒前
彭于晏应助Sophia采纳,获得30
7秒前
asdfks完成签到,获得积分20
8秒前
xinzhuoyang完成签到,获得积分10
8秒前
8秒前
薇洛的打火机完成签到 ,获得积分10
8秒前
复杂的忆灵完成签到,获得积分10
10秒前
不住完成签到,获得积分10
10秒前
顺利的边牧完成签到 ,获得积分10
12秒前
小二郎应助科研通管家采纳,获得10
12秒前
CipherSage应助科研通管家采纳,获得30
12秒前
搜集达人应助科研通管家采纳,获得10
12秒前
传奇3应助科研通管家采纳,获得10
12秒前
科研通AI6应助科研通管家采纳,获得10
13秒前
情怀应助科研通管家采纳,获得10
13秒前
小马甲应助科研通管家采纳,获得10
13秒前
Hello应助科研通管家采纳,获得10
13秒前
852应助科研通管家采纳,获得10
13秒前
田様应助科研通管家采纳,获得30
13秒前
13秒前
科目三应助科研通管家采纳,获得10
13秒前
科研通AI6应助科研通管家采纳,获得10
13秒前
大吧唧应助科研通管家采纳,获得10
13秒前
酷波er应助科研通管家采纳,获得10
14秒前
顾矜应助科研通管家采纳,获得10
14秒前
充电宝应助科研通管家采纳,获得30
14秒前
14秒前
14秒前
Akim应助科研通管家采纳,获得10
14秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
桐桐应助科研通管家采纳,获得10
14秒前
14秒前
传奇3应助科研通管家采纳,获得10
14秒前
打打应助科研通管家采纳,获得10
15秒前
顾矜应助科研通管家采纳,获得10
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5424481
求助须知:如何正确求助?哪些是违规求助? 4538810
关于积分的说明 14163993
捐赠科研通 4455806
什么是DOI,文献DOI怎么找? 2443899
邀请新用户注册赠送积分活动 1435026
关于科研通互助平台的介绍 1412337