All-temperature zinc batteries with high-entropy aqueous electrolyte

电解质 水溶液 法拉第效率 溶剂化 材料科学 储能 电化学窗口 无机化学 离子 化学工程 化学 离子电导率 热力学 有机化学 工程类 物理化学 电极 功率(物理) 物理
作者
Chongyin Yang,Jiale Xia,Chunyu Cui,Travis P. Pollard,Jenel Vatamanu,Antonio Faraone,Joseph A. Dura,Madhusudan Tyagi,Alex Kattan,Elijah Thimsen,Feng Xu,Wentao Song,Enyuan Hu,Xiao Ji,Singyuk Hou,Xiyue Zhang,Michael S. Ding,Sooyeon Hwang,Dong Su,Yang Ren
出处
期刊:Nature sustainability [Nature Portfolio]
卷期号:6 (3): 325-335 被引量:273
标识
DOI:10.1038/s41893-022-01028-x
摘要

Electrification of transportation and rising demand for grid energy storage continue to build momentum around batteries across the globe. However, the supply chain of Li-ion batteries is exposed to the increasing challenges of resourcing essential and scarce materials. Therefore, incentives to develop more sustainable battery chemistries are growing. Here we show an aqueous ZnCl2 electrolyte with introduced LiCl as supporting salt. Once the electrolyte is optimized to Li2ZnCl4⋅9H2O, the assembled Zn–air battery can sustain stable cycling over the course of 800 hours at a current density of 0.4 mA cm−2 between −60 °C and +80 °C, with 100% Coulombic efficiency for Zn stripping/plating. Even at −60 °C, >80% of room-temperature power density can be retained. Advanced characterization and theoretical calculations reveal a high-entropy solvation structure that is responsible for the excellent performance. The strong acidity allows ZnCl2 to accept donated Cl− ions to form ZnCl42− anions, while water molecules remain within the free solvent network at low salt concentration or coordinate with Li ions. Our work suggests an effective strategy for the rational design of electrolytes that could enable next-generation Zn batteries. Zinc batteries are receiving growing attention due to their sustainability merits not shared by lithium-ion technologies. Here the aqueous electrolyte design features unique solvation structures that render Zn–air pouch cell excellent cycling stability in a wide temperature range from −60 to 80 °C.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
搜集达人应助坚定的寒松采纳,获得10
刚刚
酷酷白凡完成签到,获得积分10
1秒前
Hello应助怕热除铁采纳,获得10
1秒前
2秒前
陆小果完成签到,获得积分10
2秒前
zp4完成签到,获得积分10
2秒前
橘子海完成签到,获得积分20
2秒前
善学以致用应助随便吧采纳,获得10
2秒前
2秒前
3秒前
JamesPei应助刘桔采纳,获得10
3秒前
4秒前
微尘之末完成签到,获得积分10
5秒前
CES_SH应助科研通管家采纳,获得20
5秒前
自觉松发布了新的文献求助10
5秒前
5秒前
Winkhl完成签到,获得积分10
5秒前
英俊的铭应助科研通管家采纳,获得10
5秒前
李爱国应助科研通管家采纳,获得10
5秒前
5秒前
老嫂子的春天完成签到,获得积分10
5秒前
5秒前
852应助科研通管家采纳,获得10
6秒前
脑洞疼应助科研通管家采纳,获得10
6秒前
顾矜应助科研通管家采纳,获得10
6秒前
6秒前
qiqi发布了新的文献求助30
7秒前
7秒前
7秒前
Winkhl发布了新的文献求助10
8秒前
鱿鱼完成签到,获得积分10
8秒前
8秒前
大力蓝完成签到,获得积分10
9秒前
9秒前
9秒前
10秒前
狂野的冰棍完成签到,获得积分10
10秒前
10秒前
zbs发布了新的文献求助10
10秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
Founding Fathers The Shaping of America 500
Research Handbook on Law and Political Economy Second Edition 398
March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4558330
求助须知:如何正确求助?哪些是违规求助? 3985350
关于积分的说明 12338439
捐赠科研通 3655702
什么是DOI,文献DOI怎么找? 2013951
邀请新用户注册赠送积分活动 1048833
科研通“疑难数据库(出版商)”最低求助积分说明 937181