All-temperature zinc batteries with high-entropy aqueous electrolyte

电解质 水溶液 法拉第效率 溶剂化 材料科学 储能 电化学窗口 无机化学 离子 化学工程 化学 离子电导率 热力学 有机化学 工程类 物理化学 电极 功率(物理) 物理
作者
Chongyin Yang,Jiale Xia,Chunyu Cui,Travis P. Pollard,Jenel Vatamanu,Antonio Faraone,Joseph A. Dura,Madhusudan Tyagi,Alex Kattan,Elijah Thimsen,Feng Xu,Wentao Song,Enyuan Hu,Xiao Ji,Singyuk Hou,Xiyue Zhang,Michael S. Ding,Sooyeon Hwang,Dong Su,Yang Ren
出处
期刊:Nature sustainability [Nature Portfolio]
卷期号:6 (3): 325-335 被引量:246
标识
DOI:10.1038/s41893-022-01028-x
摘要

Electrification of transportation and rising demand for grid energy storage continue to build momentum around batteries across the globe. However, the supply chain of Li-ion batteries is exposed to the increasing challenges of resourcing essential and scarce materials. Therefore, incentives to develop more sustainable battery chemistries are growing. Here we show an aqueous ZnCl2 electrolyte with introduced LiCl as supporting salt. Once the electrolyte is optimized to Li2ZnCl4⋅9H2O, the assembled Zn–air battery can sustain stable cycling over the course of 800 hours at a current density of 0.4 mA cm−2 between −60 °C and +80 °C, with 100% Coulombic efficiency for Zn stripping/plating. Even at −60 °C, >80% of room-temperature power density can be retained. Advanced characterization and theoretical calculations reveal a high-entropy solvation structure that is responsible for the excellent performance. The strong acidity allows ZnCl2 to accept donated Cl− ions to form ZnCl42− anions, while water molecules remain within the free solvent network at low salt concentration or coordinate with Li ions. Our work suggests an effective strategy for the rational design of electrolytes that could enable next-generation Zn batteries. Zinc batteries are receiving growing attention due to their sustainability merits not shared by lithium-ion technologies. Here the aqueous electrolyte design features unique solvation structures that render Zn–air pouch cell excellent cycling stability in a wide temperature range from −60 to 80 °C.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
知许解夏应助此时此刻采纳,获得10
1秒前
1秒前
爬山虎完成签到,获得积分10
1秒前
2秒前
2秒前
hu发布了新的文献求助10
2秒前
2秒前
淡淡菠萝发布了新的文献求助10
3秒前
3秒前
3秒前
俭朴的期待完成签到,获得积分10
4秒前
传奇3应助Cc采纳,获得10
5秒前
5秒前
hahakeyan完成签到,获得积分10
5秒前
5秒前
阿南发布了新的文献求助10
6秒前
Fiona000001发布了新的文献求助10
6秒前
哈欠发布了新的文献求助10
6秒前
6秒前
室内设计发布了新的文献求助10
7秒前
7秒前
田様应助电闪采纳,获得10
7秒前
天赐殊荣发布了新的文献求助10
8秒前
8秒前
圆锥香蕉完成签到,获得积分10
8秒前
贿猫发布了新的文献求助10
9秒前
JLAlpaca发布了新的文献求助10
10秒前
慕青应助strings采纳,获得10
10秒前
马尼拉发布了新的文献求助10
11秒前
安河桥发布了新的文献求助10
11秒前
11秒前
WSQ2130发布了新的文献求助10
12秒前
仁爱太阳完成签到,获得积分10
12秒前
汉堡包应助摸鱼采纳,获得10
12秒前
英俊的铭应助天赐殊荣采纳,获得10
13秒前
芒琪发布了新的文献求助10
13秒前
13秒前
义气的行天完成签到,获得积分10
13秒前
7ohnny应助我能写出东西采纳,获得30
13秒前
太阳当下完成签到,获得积分10
13秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961321
求助须知:如何正确求助?哪些是违规求助? 3507666
关于积分的说明 11137254
捐赠科研通 3240099
什么是DOI,文献DOI怎么找? 1790749
邀请新用户注册赠送积分活动 872460
科研通“疑难数据库(出版商)”最低求助积分说明 803271