A collaborative perception method of human-urban environment based on machine learning and its application to the case area

计算机科学 感知 均方误差 人工智能 机器学习 统计 数学 心理学 神经科学
作者
Jianlin Huang,Linbo Qing,Longmei Han,Jiajia Liao,Li Guo,Yonghong Peng
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:119: 105746-105746 被引量:5
标识
DOI:10.1016/j.engappai.2022.105746
摘要

Human perception refers to people's psychological feelings about a place. Understanding residents' perception and their activities is important for promoting people-oriented urban construction. Recently, with the development of machine learning, researchers used this technology to study human perception from the open-source street view images. However, the perception measurement is limited, caused by the inadequate feature extraction. Besides, human perceptions and their activities are separately studied, which hinders the process of revealing the relationship between human and environment. Hence, a human perception model was firstly proposed, where a Transformer network was introduced to extract more discriminative semantic features and visual elements were integrated to enhance the feature representations. Experiments showed that the average deviation of perceptual scores was controlled within 1.6 points, and its performance was improved by around 1%–18% in mean square error (MSE), root mean square error (RMSE) and mean absolute error (MAE) compared with the existing best results. Secondly, the collaborative study of environmental perception and residents' activities was carried out in the case area. Specifically, the perceptual measures of environment were implemented based on the street view video data. Meanwhile, the activities of residents were recognized by SlowFast network and quantified by a new informatics-based diversity indicator (Active Index). This study finally obtained their spatial distribution map, and showed that the perceptual dimensions lively, boring, safe, and depressing are correlated with information quantity of activities. The paper provides a novel method to understand better the urban environment and the distribution of residents' activities to facilitate urban planning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
田様应助LLLL采纳,获得10
1秒前
叶子完成签到,获得积分10
1秒前
彭于晏应助YY采纳,获得10
2秒前
L061114完成签到 ,获得积分10
2秒前
2秒前
2秒前
caicai发布了新的文献求助10
3秒前
flora发布了新的文献求助10
5秒前
坚强的代曼完成签到,获得积分10
5秒前
赘婿应助张兮兮采纳,获得10
6秒前
6秒前
Rohee发布了新的文献求助10
6秒前
大布发布了新的文献求助20
7秒前
从容芮应助科研通管家采纳,获得10
8秒前
甜甜玫瑰应助科研通管家采纳,获得10
8秒前
从容芮应助科研通管家采纳,获得10
8秒前
李健应助科研通管家采纳,获得10
8秒前
华仔应助科研通管家采纳,获得150
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
彭于晏应助科研通管家采纳,获得10
8秒前
从容芮应助科研通管家采纳,获得10
8秒前
FashionBoy应助科研通管家采纳,获得10
8秒前
CipherSage应助科研通管家采纳,获得10
8秒前
9秒前
从容芮应助科研通管家采纳,获得10
9秒前
甜甜玫瑰应助科研通管家采纳,获得10
9秒前
pluto应助科研通管家采纳,获得10
9秒前
feb完成签到,获得积分10
9秒前
斯文败类应助科研通管家采纳,获得10
9秒前
从容芮应助科研通管家采纳,获得10
9秒前
完美世界应助科研通管家采纳,获得10
9秒前
汉堡包应助科研通管家采纳,获得10
9秒前
甜甜玫瑰应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
10秒前
10秒前
哦NO完成签到,获得积分10
11秒前
江停完成签到,获得积分10
12秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161577
求助须知:如何正确求助?哪些是违规求助? 2812863
关于积分的说明 7897487
捐赠科研通 2471775
什么是DOI,文献DOI怎么找? 1316151
科研通“疑难数据库(出版商)”最低求助积分说明 631219
版权声明 602112