已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Divide and conquer: A granular concept-cognitive computing system for dynamic classification decision making

计算机科学 动态决策 机器学习 人工智能 追踪 分而治之算法 过程(计算) 决策工程 决策支持系统 数据挖掘 粒度计算 商业决策图 粗集 算法 操作系统
作者
Yunlong Mi,Zongrun Wang,Hui Liu,Yi Qu,Guoqing Yu,Yong Shi
出处
期刊:European Journal of Operational Research [Elsevier]
卷期号:308 (1): 255-273 被引量:6
标识
DOI:10.1016/j.ejor.2022.12.018
摘要

Dynamic classification decision making is a crucial issue in management decision making and data mining, which is widely applied in different areas such as human-machine collaborative decision making, network intrusion detection, and traffic data stream mining. However, the existing strategies of static classification decision making are always unable to achieve desired outcomes in ill-structured domains, as the standard machine learning approaches mainly focus on static learning, which is not suitable to mine evolving dynamic data to support decision making. In addition, the main factors regarding incorrect classification predictions are also important for knowledge management and decision making, which is often ignored in many standard learning systems. Therefore, inspired by the idea of divide and conquer, we in this article propose a novel dynamic concept learning framework, namely granular concept-cognitive computing system (gC3S), for dynamic classification decision making by transforming instances into concepts. More specifically, to better characterize the process of dynamic classification decision making, we give the objective function of gC3S via mathematical programming theory. For management decision making, gC3S emphasizes tracing the corresponding approximate concepts via the incorrect classification predictions. Finally, we also apply gC3S to traffic data stream mining, and the experimental results on the different real-world situations further demonstrate that our approach is very effective for dynamic classification decision making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mozhi发布了新的文献求助10
1秒前
1秒前
2秒前
yanhan2009完成签到 ,获得积分10
2秒前
wanci应助cici采纳,获得10
6秒前
摘星数羊发布了新的文献求助10
6秒前
娜娜发布了新的文献求助10
7秒前
星辰大海应助WLL采纳,获得10
9秒前
10秒前
yufei发布了新的文献求助30
10秒前
娜娜完成签到,获得积分10
18秒前
18秒前
19秒前
19秒前
李健应助liiuliu采纳,获得10
21秒前
摘星数羊完成签到 ,获得积分10
21秒前
脑洞疼应助Riley采纳,获得10
21秒前
23秒前
老肖应助黙宇循光采纳,获得10
24秒前
25秒前
舒伯特完成签到 ,获得积分10
29秒前
33秒前
Sitroul完成签到,获得积分10
33秒前
今天没烦恼完成签到 ,获得积分10
35秒前
cici完成签到,获得积分10
35秒前
36秒前
36秒前
WH发布了新的文献求助10
39秒前
39秒前
cici发布了新的文献求助10
39秒前
43秒前
43秒前
Josie完成签到 ,获得积分10
43秒前
45秒前
TS发布了新的文献求助10
47秒前
欧阳完成签到 ,获得积分10
49秒前
51秒前
儒雅的傲芙完成签到,获得积分10
51秒前
Hello应助HR112采纳,获得30
52秒前
Liver完成签到,获得积分20
53秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161877
求助须知:如何正确求助?哪些是违规求助? 2813104
关于积分的说明 7898643
捐赠科研通 2472140
什么是DOI,文献DOI怎么找? 1316350
科研通“疑难数据库(出版商)”最低求助积分说明 631278
版权声明 602129