Optimal tuning of support vector machines and k-NN algorithm by using Bayesian optimization for newborn cry signal diagnosis based on audio signal processing features

支持向量机 Mel倒谱 人工智能 计算机科学 模式识别(心理学) 灵敏度(控制系统) 背景(考古学) 交叉验证 朴素贝叶斯分类器 语音识别 机器学习 贝叶斯概率 信号(编程语言) 韵律 特征提取 工程类 古生物学 生物 程序设计语言 电子工程
作者
Salim Lahmiri,Chakib Tadj,Christian Gargour,Stelios Bekiros
出处
期刊:Chaos Solitons & Fractals [Elsevier BV]
卷期号:167: 112972-112972 被引量:6
标识
DOI:10.1016/j.chaos.2022.112972
摘要

Recently, the number of machine learning models used to classify cry signals of healthy and unhealthy newborns has been significantly increasing. Various works have already reported encouraging classification results; however, fine-tuning of the hyper-parameters of machine leaning algorithms is still an open problem in the context of newborn cry signal classification. This paper proposes to use Bayesian optimization (BO) method to optimize the hyper-parameters of Support Vector Machine (SVM) with radial basis function (RBF) kernel and k-nearest neighbors (kNN) trained with different audio features separately or combined; namely, mel-frequency cepstral coefficients (MFCC), auditory-inspired amplitude modulation (AAM), and prosody. Particularly, the chi-square test is applied to each set of features to retain the ten most significant ones used to train optimal classifiers. The accuracy, sensitivity, and specificity of each experimental model are computed following the standard 10-fold cross-validation protocol. One of the contributions is an improvement over previous works on newborn cry signal classification used to distinguish between healthy and unhealthy ones over the same database, in terms of performance. The best model is the SVM trained with AAM ten most significant features achieved 83.62 % ± 0.022 accuracy, 59.18 % ± 0.0469 sensitivity, and 93.87 % ± 0.0190 specificity followed by kNN trained with ten most features from MFCC, AAM, and prosody to obtain 82.88 % ± 0.0144 accuracy, 55.34 % ± 0.0350 sensitivity, and 94.42 % ± 0.0075 specificity. These results outperformed existing works validated on the same database. In addition, optimally tuned SVM and kNN are fed with a restricted number of selected patterns so as the processing time for training and testing is significantly limited. This means that the RBF-SVM-BO classifier trained with AAM ten most significant features is more able to distinguish between healthy and unhealthy newborns.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
情怀应助PL采纳,获得10
2秒前
3秒前
新手鼓手完成签到,获得积分20
4秒前
linlinyilulvdeng完成签到,获得积分10
4秒前
6秒前
JC完成签到,获得积分10
6秒前
天边外完成签到,获得积分10
6秒前
田様应助LOWRY采纳,获得30
7秒前
给我个二硫碘化钾完成签到,获得积分10
7秒前
cjchem发布了新的文献求助10
7秒前
yangyj完成签到,获得积分10
8秒前
所所应助西子阳采纳,获得10
9秒前
甜甜圈发布了新的文献求助10
10秒前
Zr97完成签到,获得积分10
11秒前
王大壮完成签到,获得积分10
11秒前
小二郎应助漫栀采纳,获得10
13秒前
打打应助美味的薯片采纳,获得10
14秒前
14秒前
15秒前
赘婿应助cjchem采纳,获得10
15秒前
16秒前
小蘑菇应助清蒸鱼采纳,获得10
18秒前
19秒前
麦子发布了新的文献求助10
19秒前
20秒前
20秒前
花笙给花笙的求助进行了留言
20秒前
21秒前
鸸蓝完成签到,获得积分10
21秒前
dongan发布了新的文献求助10
21秒前
22秒前
JamesPei应助科研通管家采纳,获得10
22秒前
英俊的铭应助科研通管家采纳,获得10
22秒前
乐乐应助科研通管家采纳,获得10
22秒前
打打应助科研通管家采纳,获得10
22秒前
jojodan应助科研通管家采纳,获得10
22秒前
研友_alan应助科研通管家采纳,获得10
22秒前
脑洞疼应助科研通管家采纳,获得10
23秒前
DijiaXu应助科研通管家采纳,获得40
23秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998569
求助须知:如何正确求助?哪些是违规求助? 3538078
关于积分的说明 11273314
捐赠科研通 3277023
什么是DOI,文献DOI怎么找? 1807331
邀请新用户注册赠送积分活动 883825
科研通“疑难数据库(出版商)”最低求助积分说明 810070