Optimal tuning of support vector machines and k-NN algorithm by using Bayesian optimization for newborn cry signal diagnosis based on audio signal processing features

支持向量机 Mel倒谱 人工智能 计算机科学 模式识别(心理学) 灵敏度(控制系统) 背景(考古学) 交叉验证 朴素贝叶斯分类器 语音识别 机器学习 贝叶斯概率 信号(编程语言) 韵律 特征提取 工程类 古生物学 生物 电子工程 程序设计语言
作者
Salim Lahmiri,Chakib Tadj,Christian Gargour,Stelios Bekiros
出处
期刊:Chaos Solitons & Fractals [Elsevier]
卷期号:167: 112972-112972 被引量:6
标识
DOI:10.1016/j.chaos.2022.112972
摘要

Recently, the number of machine learning models used to classify cry signals of healthy and unhealthy newborns has been significantly increasing. Various works have already reported encouraging classification results; however, fine-tuning of the hyper-parameters of machine leaning algorithms is still an open problem in the context of newborn cry signal classification. This paper proposes to use Bayesian optimization (BO) method to optimize the hyper-parameters of Support Vector Machine (SVM) with radial basis function (RBF) kernel and k-nearest neighbors (kNN) trained with different audio features separately or combined; namely, mel-frequency cepstral coefficients (MFCC), auditory-inspired amplitude modulation (AAM), and prosody. Particularly, the chi-square test is applied to each set of features to retain the ten most significant ones used to train optimal classifiers. The accuracy, sensitivity, and specificity of each experimental model are computed following the standard 10-fold cross-validation protocol. One of the contributions is an improvement over previous works on newborn cry signal classification used to distinguish between healthy and unhealthy ones over the same database, in terms of performance. The best model is the SVM trained with AAM ten most significant features achieved 83.62 % ± 0.022 accuracy, 59.18 % ± 0.0469 sensitivity, and 93.87 % ± 0.0190 specificity followed by kNN trained with ten most features from MFCC, AAM, and prosody to obtain 82.88 % ± 0.0144 accuracy, 55.34 % ± 0.0350 sensitivity, and 94.42 % ± 0.0075 specificity. These results outperformed existing works validated on the same database. In addition, optimally tuned SVM and kNN are fed with a restricted number of selected patterns so as the processing time for training and testing is significantly limited. This means that the RBF-SVM-BO classifier trained with AAM ten most significant features is more able to distinguish between healthy and unhealthy newborns.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Asuka完成签到,获得积分10
刚刚
Ppp完成签到 ,获得积分10
刚刚
Lucas应助意意采纳,获得10
2秒前
4秒前
FashionBoy应助倪倪采纳,获得10
5秒前
6秒前
111完成签到,获得积分20
6秒前
小罗完成签到 ,获得积分10
7秒前
8秒前
8秒前
9秒前
lvzhigang发布了新的文献求助10
10秒前
11秒前
充电宝应助齐安客采纳,获得10
12秒前
keikeizi发布了新的文献求助30
13秒前
扬大小汤完成签到,获得积分10
14秒前
14秒前
脑洞疼应助zwenng采纳,获得10
15秒前
周百成发布了新的文献求助10
15秒前
19秒前
早晨完成签到,获得积分10
20秒前
共享精神应助周百成采纳,获得10
20秒前
21秒前
21秒前
23秒前
橖子小姐发布了新的文献求助10
24秒前
Lliker发布了新的文献求助10
25秒前
Kkens发布了新的文献求助20
25秒前
YY完成签到,获得积分10
25秒前
打打应助FRW采纳,获得10
26秒前
zwenng发布了新的文献求助10
26秒前
无花果应助钮小童采纳,获得10
27秒前
甜蜜的阳光完成签到 ,获得积分10
27秒前
周百成完成签到,获得积分10
29秒前
29秒前
29秒前
31秒前
辛勤香岚完成签到,获得积分10
31秒前
LQS完成签到,获得积分10
32秒前
李健应助Demon采纳,获得10
33秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141451
求助须知:如何正确求助?哪些是违规求助? 2792469
关于积分的说明 7803043
捐赠科研通 2448691
什么是DOI,文献DOI怎么找? 1302778
科研通“疑难数据库(出版商)”最低求助积分说明 626650
版权声明 601237