Machine Learning-Based Models with High Accuracy and Broad Applicability Domains for Screening PMT/vPvM Substances

可解释性 优先次序 计算机科学 机器学习 一般化 人工智能 高通量筛选 接收机工作特性 分拆(数论) 化学 数学 工程类 生物化学 组合数学 数学分析 管理科学
作者
Qiming Zhao,Yang Yu,Yuchen Gao,Lilai Shen,Shixuan Cui,Yiyuan Gou,Chunlong Zhang,Shulin Zhuang,Guibin Jiang
出处
期刊:Environmental Science & Technology [American Chemical Society]
卷期号:56 (24): 17880-17889 被引量:36
标识
DOI:10.1021/acs.est.2c06155
摘要

Persistent, mobile, and toxic (PMT) substances and very persistent and very mobile (vPvM) substances can transport over long distances from various sources, increasing the public health risk. A rapid and high-throughput screening of PMT/vPvM substances is thus warranted to the risk prevention and mitigation measures. Herein, we construct a machine learning-based screening system integrated with five models for high-throughput classification of PMT/vPvM substances. The models are constructed with 44 971 substances by conventional learning, deep learning, and ensemble learning algorithms, among which, LightGBM and XGBoost outperform other algorithms with metrics exceeding 0.900. Good model interpretability is achieved through the number of free halogen atoms (fr_halogen) and the logarithm of partition coefficient (MolLogP) as the two most critical molecular descriptors representing the persistence and mobility of substances, respectively. Our screening system exhibits a great generalization capability with area under the receiver operating characteristic curve (AUROC) above 0.951 and is successfully applied to the persistent organic pollutants (POPs), prioritized PMT/vPvM substances, and pesticides. The screening system constructed in this study can serve as an efficient and reliable tool for high-throughput risk assessment and the prioritization of managing emerging contaminants.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
点凌蝶完成签到,获得积分10
刚刚
丘比特应助朴素的松采纳,获得10
2秒前
inter发布了新的文献求助10
2秒前
8秒前
8秒前
星辰大海应助Wqian采纳,获得10
11秒前
11秒前
15秒前
23秒前
24秒前
科目三应助朴素的松采纳,获得10
25秒前
Jodie发布了新的文献求助10
28秒前
28秒前
Heinrich完成签到,获得积分10
29秒前
Lucas应助inter采纳,获得10
33秒前
无极微光应助科研通管家采纳,获得20
36秒前
Orange应助科研通管家采纳,获得10
36秒前
Verity应助科研通管家采纳,获得10
36秒前
36秒前
丘比特应助科研通管家采纳,获得10
36秒前
36秒前
苏新天完成签到 ,获得积分10
36秒前
搜集达人应助科研通管家采纳,获得10
36秒前
Liangang应助科研通管家采纳,获得10
36秒前
36秒前
搜集达人应助科研通管家采纳,获得10
36秒前
huanger应助科研通管家采纳,获得10
36秒前
桐桐应助科研通管家采纳,获得10
37秒前
斯文败类应助科研通管家采纳,获得10
37秒前
小新应助科研通管家采纳,获得10
37秒前
香蕉觅云应助科研通管家采纳,获得10
37秒前
科研通AI6应助科研通管家采纳,获得10
37秒前
斯文败类应助科研通管家采纳,获得10
37秒前
一叶知秋应助科研通管家采纳,获得10
37秒前
37秒前
37秒前
39秒前
跳跃的翼完成签到,获得积分10
42秒前
健忘可愁完成签到,获得积分10
43秒前
跳跃的翼发布了新的文献求助10
44秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557705
求助须知:如何正确求助?哪些是违规求助? 4642797
关于积分的说明 14669110
捐赠科研通 4584209
什么是DOI,文献DOI怎么找? 2514668
邀请新用户注册赠送积分活动 1488870
关于科研通互助平台的介绍 1459550