Investigation of deep transfer learning for cross-turbine diagnosis of wind turbine faults

计算机科学 SCADA系统 学习迁移 深度学习 风力发电 涡轮机 卷积神经网络 人工智能 断层(地质) 特征(语言学) 一般化 人工神经网络 机器学习 数据挖掘 工程类 机械工程 数学分析 语言学 哲学 数学 地震学 地质学 电气工程
作者
Ping Xie,Xingmin Zhang,Guoqian Jiang,Jian Cui,Qun He
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:34 (4): 044009-044009 被引量:3
标识
DOI:10.1088/1361-6501/acadf7
摘要

Abstract Data-driven fault diagnosis of wind turbines has gained popularity, and various deep learning models have been developed accordingly with massive amounts of data and achieved an excellent diagnosis performance. However, most existing deep learning models require a similar distribution of both training and testing data, thus the trained model cannot generalize new wind turbines with different data distributions. In addition, there are insufficient fault data in practice, and therefore the cost of training a new model from scratch is extremely high. To solve these problems, a cross-turbine fault diagnosis method based on deep transfer learning is proposed for wind turbines with the available supervisory control and data acquisition (SCADA) data. To better capture the spatial features of SCADA data, a deep multi-scale residual attention convolutional neural network (DMRACNN) is first designed. Then, the distribution differences between the source and target domain data are aligned at feature level. Specifically, we investigate the transfer performance of four different domain adaptation metrics. We evaluate our proposed method using SCADA data from two wind turbines to compare the diagnostic performance of four basic networks combined with four transfer metrics. Compared with traditional deep learning methods, our proposed DMRACNN achieved significant performance improvements. A cross-validation experiment using two turbines demonstrates the strong generalization ability of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
MJJ发布了新的文献求助10
2秒前
酷波er应助Dr.Wei采纳,获得10
2秒前
兼听则明应助taoj采纳,获得50
2秒前
Lucas应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
午见千山应助科研通管家采纳,获得20
3秒前
共享精神应助科研通管家采纳,获得10
3秒前
3秒前
SYLH应助科研通管家采纳,获得10
3秒前
SYLH应助科研通管家采纳,获得10
3秒前
完美世界应助科研通管家采纳,获得10
3秒前
丘比特应助科研通管家采纳,获得10
3秒前
无花果应助科研通管家采纳,获得10
3秒前
午见千山应助科研通管家采纳,获得10
3秒前
sciDoge应助科研通管家采纳,获得10
3秒前
天天快乐应助科研通管家采纳,获得10
4秒前
4秒前
Benjamin发布了新的文献求助20
4秒前
4秒前
FashionBoy应助科研通管家采纳,获得10
4秒前
一鸣大人应助科研通管家采纳,获得10
4秒前
十年小橘完成签到,获得积分10
4秒前
CodeCraft应助狂野忆文采纳,获得10
4秒前
土豪的不悔完成签到 ,获得积分10
5秒前
甜的桃子完成签到,获得积分10
5秒前
小阳发布了新的文献求助10
6秒前
爆米花应助MJJ采纳,获得10
6秒前
kanglan发布了新的文献求助10
7秒前
7秒前
煦123发布了新的文献求助10
8秒前
朴素雅阳完成签到 ,获得积分10
9秒前
七柚完成签到 ,获得积分10
9秒前
唐妮完成签到,获得积分10
10秒前
HHD发布了新的文献求助10
10秒前
Hello应助火星天采纳,获得10
11秒前
11秒前
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Novel synthetic routes for multiple bond formation between Si, Ge, and Sn and the d- and p-block elements 700
Neuromuscular and Electrodiagnostic Medicine Board Review 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3514884
求助须知:如何正确求助?哪些是违规求助? 3097246
关于积分的说明 9234750
捐赠科研通 2792216
什么是DOI,文献DOI怎么找? 1532342
邀请新用户注册赠送积分活动 711969
科研通“疑难数据库(出版商)”最低求助积分说明 707062