材料科学
发电
饮用水净化
可再生能源
膜
化学工程
废水
纯净水
电势能
电
污染物
环境科学
环境工程
能量(信号处理)
功率(物理)
化学
电气工程
有机化学
统计
工程类
物理
量子力学
生物化学
数学
作者
Ji‐Soo Jang,Yunsung Lim,Hamin Shin,Jihan Kim,Tae Gwang Yun
标识
DOI:10.1002/adma.202209076
摘要
Hydroelectric nanogenerators have been previously proposed to recycle various water resources and polluted water. However, as conventional hydroelectric nanogenerators only utilize water resources, they cannot provide a fundamental solution for water recycling. In this study, a water purification membrane is proposed that can simultaneously generate electricity during the purification process (electricity generation and purification membrane (EPM)) for water recycling. As polluted water passes through the EPM, the water is purified in the perpendicular direction, while electricity is simultaneously produced in the horizontal direction by the movement of ions. Notably, the EPM exhibits high energy generation performance (maximum power 16.44 µW and energy 15.16 mJ) by the streaming effect of water-streaming carbon nanotubes (CNTs). Moreover, by using a poly(acrylic acid)/carboxymethyl cellulose (PAA/CMC) binder to EPM, the energy-generation performance and long-term stability are substantially improved and outstanding mechanical stability is provided, regardless of the acidity of the water source (pH 1-10). More importantly, the EPM exhibits the water purification characteristics of >90% rejection of sub-10 nm pollutants and potentiality of ångstrom level cation rejection, with simultaneous and continuous energy generation. Overall, this study proposes an efficient EPM model, which can be potentially used as a next-generation renewable energy generation approach, thus laying the foundation for effective utilization of polluted water resources.
科研通智能强力驱动
Strongly Powered by AbleSci AI