Single-cell RNA sequencing reveals the Müller subtypes and inner blood–retinal barrier regulatory network in early diabetic retinopathy

糖尿病性视网膜病变 视网膜 生物 细胞生物学 血-视网膜屏障 视网膜 细胞 神经科学 糖尿病 遗传学 内分泌学 生物化学
作者
Yan Wang,Xiongyi Yang,Qiumo Li,Yuxi Zhang,Lin Chen,Libing Hong,Zhuohang Xie,Siyu Yang,Xiaoqing Deng,Mingzhe Cao,Guoguo Yi,Min Fu
出处
期刊:Frontiers in Molecular Neuroscience [Frontiers Media SA]
卷期号:15 被引量:4
标识
DOI:10.3389/fnmol.2022.1048634
摘要

As the basic pathological changes of diabetic retinopathy (DR), the destruction of the blood-retina barrier (BRB) and vascular leakage have attracted extensive attention. Without timely intervention, BRB damage will eventually lead to serious visual impairment. However, due to the delicate structure and complex function of the BRB, the mechanism underlying damage to the BRB in DR has not been fully clarified. Here, we used single-cell RNA sequencing (RNA-seq) technology to analyze 35,910 cells from the retina of healthy and streptozotocin (STZ)-induced diabetic rats, focusing on the degeneration of the main cells constituting the rat BRB in DR and the new definition of two subpopulations of Müller cells at the cell level, Ctxn3+Müller and Ctxn3-Müller cells. We analyzed the characteristics and significant differences between the two groups of Müller cells and emphasized the importance of the Ctxn3+Müller subgroup in diseases. In endothelial cells, we found possible mechanisms of self-protection and adhesion and recruitment to pericytes. In addition, we constructed a communication network between endothelial cells, pericytes, and Müller subsets and clarified the complex regulatory relationship between cells. In summary, we constructed an atlas of the iBRB in the early stage of DR and elucidate the degeneration of its constituent cells and Müller cells and the regulatory relationship between them, providing a series of potential targets for the early treatment of DR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
3秒前
ALONE完成签到,获得积分20
3秒前
曹沛岚完成签到,获得积分10
4秒前
张子捷应助weijiechi采纳,获得10
5秒前
fmwang发布了新的文献求助30
5秒前
wyg_gzed应助ss采纳,获得10
5秒前
王雪完成签到,获得积分10
6秒前
斯文听南发布了新的文献求助30
6秒前
7秒前
搜集达人应助ALONE采纳,获得10
7秒前
AYu发布了新的文献求助10
8秒前
Thunnus001完成签到,获得积分10
9秒前
shawn发布了新的文献求助10
10秒前
11秒前
Lucas应助范瑞文采纳,获得10
12秒前
16秒前
16秒前
ticsadis完成签到,获得积分10
19秒前
20秒前
TAO发布了新的文献求助10
21秒前
22秒前
22秒前
23秒前
赋成完成签到,获得积分10
24秒前
25秒前
秋天的向日葵完成签到 ,获得积分10
25秒前
彭珊发布了新的文献求助10
27秒前
27秒前
27秒前
小马甲应助追寻南珍采纳,获得10
28秒前
29秒前
迢迢笙箫应助彭珊采纳,获得10
31秒前
31秒前
33秒前
33秒前
zhang完成签到,获得积分10
34秒前
乐乐应助GEZI采纳,获得10
36秒前
AYu完成签到,获得积分10
37秒前
高分求助中
The ACS Guide to Scholarly Communication 2500
Sustainability in Tides Chemistry 2000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 810
Pharmacogenomics: Applications to Patient Care, Third Edition 800
Genera Insectorum: Mantodea, Fam. Mantidæ, Subfam. Hymenopodinæ (Classic Reprint) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3082549
求助须知:如何正确求助?哪些是违规求助? 2735847
关于积分的说明 7539036
捐赠科研通 2385432
什么是DOI,文献DOI怎么找? 1264844
科研通“疑难数据库(出版商)”最低求助积分说明 612830
版权声明 597685