Computational simulation of virtual patients reduces dataset bias and improves machine learning-based detection of ARDS from noisy heterogeneous ICU datasets

计算机科学 概化理论 聚类分析 杠杆(统计) 机器学习 人工智能 数据挖掘 数学 统计
作者
Konstantin Sharafutdinov,Sebastian Fritsch,Mina Iravani,Pejman Farhadi Ghalati,Sina Saffaran,Declan G. Bates,Jonathan G. Hardman,Richard Polzin,Hannah Mayer,Gernot Marx,Johannes Bickenbach,Andreas Schuppert
出处
期刊:Cold Spring Harbor Laboratory - medRxiv 被引量:2
标识
DOI:10.1101/2022.12.02.22283033
摘要

ABSTRACT Goal Machine learning (ML) technologies that leverage large-scale patient data are promising tools predicting disease evolution in individual patients. However, the limited generalizability of ML models developed on single-center datasets, and their unproven performance in real-world settings, remain significant constraints to their widespread adoption in clinical practice. One approach to tackle this issue is to base learning on large multi-center datasets. However, such heterogeneous datasets can introduce further biases driven by data origin, as data structures and patient cohorts may differ between hospitals. Methods In this paper, we demonstrate how mechanistic virtual patient (VP) modeling can be used to capture specific features of patients’ states and dynamics, while reducing biases introduced by heterogeneous datasets. We show how VP modeling can be used to extract relevant medical information on individual patients with suspected acute respiratory distress syndrome (ARDS) from observational data of mixed origin. We compare the results of an unsupervised learning method (clustering) in two cases: where the learning is based on original patient data and on data ‘filtered’ through a VP model. Results More robust cluster configurations were observed in clustering using the VP model-based filtered data. VP model-based clustering also reduced biases introduced by the inclusion of data from different hospitals and was able to discover an additional cluster with significant ARDS enrichment. Conclusions Our results indicate that mechanistic VP modeling can be used as a filter to significantly reduce biases introduced by learning from heterogeneous datasets and to allow improved discovery of patient cohorts driven exclusively by medical conditions. IMPACT STATEMENT Mechanistic virtual patient modeling can be used as a filter to extract relevant medical information on individual patients, significantly reducing biases introduced by learning from heterogeneous datasets and allowing improved discovery of patient cohorts driven exclusively by medical conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Akim应助xiaoxiao采纳,获得10
刚刚
852应助踏月偷心采纳,获得10
刚刚
jiu完成签到,获得积分10
1秒前
多吃青菜完成签到,获得积分10
2秒前
天天呼的海角完成签到,获得积分10
2秒前
77完成签到 ,获得积分10
2秒前
2秒前
汪汪完成签到,获得积分10
3秒前
safire完成签到,获得积分10
3秒前
3秒前
大虫子完成签到,获得积分10
4秒前
ljz910005完成签到,获得积分10
4秒前
Hossiu发布了新的文献求助10
4秒前
马上动起来完成签到,获得积分10
5秒前
5秒前
小鬼完成签到,获得积分10
5秒前
SYLH应助符雁采纳,获得10
5秒前
SGQT完成签到,获得积分10
5秒前
笑点低战斗机完成签到,获得积分10
5秒前
琉璃完成签到 ,获得积分10
6秒前
6秒前
Ae关注了科研通微信公众号
6秒前
千逐完成签到,获得积分10
7秒前
酷酷含桃完成签到,获得积分10
7秒前
爆米花应助彻底的采纳,获得10
7秒前
Cu_wx完成签到,获得积分10
7秒前
7秒前
小白完成签到,获得积分10
7秒前
烤鸭本鸭完成签到,获得积分10
8秒前
yolo完成签到,获得积分10
8秒前
8秒前
脚踏实滴完成签到 ,获得积分10
9秒前
Mannone完成签到,获得积分10
9秒前
仂尤发布了新的文献求助10
9秒前
Giinjju发布了新的文献求助10
10秒前
10秒前
狂野世立完成签到,获得积分10
10秒前
雪凝清霜完成签到,获得积分10
10秒前
科研通AI2S应助爽o采纳,获得10
10秒前
10秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968637
求助须知:如何正确求助?哪些是违规求助? 3513552
关于积分的说明 11168493
捐赠科研通 3248935
什么是DOI,文献DOI怎么找? 1794554
邀请新用户注册赠送积分活动 875188
科研通“疑难数据库(出版商)”最低求助积分说明 804691