Computational simulation of virtual patients reduces dataset bias and improves machine learning-based detection of ARDS from noisy heterogeneous ICU datasets

计算机科学 概化理论 聚类分析 杠杆(统计) 机器学习 人工智能 数据挖掘 数学 统计
作者
Konstantin Sharafutdinov,Sebastian Fritsch,Mina Iravani,Pejman Farhadi Ghalati,Sina Saffaran,Declan G. Bates,Jonathan G. Hardman,Richard Polzin,Hannah Mayer,Gernot Marx,Johannes Bickenbach,Andreas Schuppert
出处
期刊:Cold Spring Harbor Laboratory - medRxiv 被引量:2
标识
DOI:10.1101/2022.12.02.22283033
摘要

ABSTRACT Goal Machine learning (ML) technologies that leverage large-scale patient data are promising tools predicting disease evolution in individual patients. However, the limited generalizability of ML models developed on single-center datasets, and their unproven performance in real-world settings, remain significant constraints to their widespread adoption in clinical practice. One approach to tackle this issue is to base learning on large multi-center datasets. However, such heterogeneous datasets can introduce further biases driven by data origin, as data structures and patient cohorts may differ between hospitals. Methods In this paper, we demonstrate how mechanistic virtual patient (VP) modeling can be used to capture specific features of patients’ states and dynamics, while reducing biases introduced by heterogeneous datasets. We show how VP modeling can be used to extract relevant medical information on individual patients with suspected acute respiratory distress syndrome (ARDS) from observational data of mixed origin. We compare the results of an unsupervised learning method (clustering) in two cases: where the learning is based on original patient data and on data ‘filtered’ through a VP model. Results More robust cluster configurations were observed in clustering using the VP model-based filtered data. VP model-based clustering also reduced biases introduced by the inclusion of data from different hospitals and was able to discover an additional cluster with significant ARDS enrichment. Conclusions Our results indicate that mechanistic VP modeling can be used as a filter to significantly reduce biases introduced by learning from heterogeneous datasets and to allow improved discovery of patient cohorts driven exclusively by medical conditions. IMPACT STATEMENT Mechanistic virtual patient modeling can be used as a filter to extract relevant medical information on individual patients, significantly reducing biases introduced by learning from heterogeneous datasets and allowing improved discovery of patient cohorts driven exclusively by medical conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丁凛完成签到,获得积分10
刚刚
SciGPT应助凝心采纳,获得10
刚刚
眯眯眼的慕儿完成签到,获得积分10
刚刚
林贞宝宝发布了新的文献求助10
1秒前
嘻嘻哈哈完成签到 ,获得积分10
1秒前
1秒前
1秒前
3秒前
Xg发布了新的文献求助10
3秒前
DRRIGHT发布了新的文献求助30
3秒前
4秒前
kkaky完成签到,获得积分10
4秒前
陈陈完成签到,获得积分10
4秒前
psclib发布了新的文献求助10
4秒前
zho关闭了zho文献求助
5秒前
5秒前
学术菜鸡发布了新的文献求助10
6秒前
shiyu完成签到,获得积分10
6秒前
danjaun完成签到 ,获得积分20
7秒前
曲奇饼干完成签到,获得积分10
7秒前
勤劳的怀梦完成签到,获得积分10
7秒前
7秒前
StellaZhang发布了新的文献求助10
7秒前
1ys完成签到,获得积分10
7秒前
7秒前
领导范儿应助易今采纳,获得10
8秒前
ZAP发布了新的文献求助10
8秒前
无奈凝莲发布了新的文献求助20
8秒前
万能图书馆应助Zhangll采纳,获得10
9秒前
狒狒爱学习完成签到,获得积分10
9秒前
魔幻大有完成签到 ,获得积分10
9秒前
南山无梅落完成签到 ,获得积分10
10秒前
10秒前
10秒前
koritto发布了新的文献求助10
10秒前
HUU发布了新的文献求助10
10秒前
11秒前
12秒前
12秒前
板板发布了新的文献求助10
12秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
Crystal structures of UP2, UAs2, UAsS, and UAsSe in the pressure range up to 60 GPa 570
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3467776
求助须知:如何正确求助?哪些是违规求助? 3060732
关于积分的说明 9073021
捐赠科研通 2751205
什么是DOI,文献DOI怎么找? 1509564
科研通“疑难数据库(出版商)”最低求助积分说明 697377
邀请新用户注册赠送积分活动 697315