Computational simulation of virtual patients reduces dataset bias and improves machine learning-based detection of ARDS from noisy heterogeneous ICU datasets

计算机科学 概化理论 聚类分析 杠杆(统计) 机器学习 人工智能 数据挖掘 数学 统计
作者
Konstantin Sharafutdinov,Sebastian Fritsch,Mina Iravani,Pejman Farhadi Ghalati,Sina Saffaran,Declan G. Bates,Jonathan G. Hardman,Richard Polzin,Hannah Mayer,Gernot Marx,Johannes Bickenbach,Andreas Schuppert
出处
期刊:Cold Spring Harbor Laboratory - medRxiv 被引量:2
标识
DOI:10.1101/2022.12.02.22283033
摘要

ABSTRACT Goal Machine learning (ML) technologies that leverage large-scale patient data are promising tools predicting disease evolution in individual patients. However, the limited generalizability of ML models developed on single-center datasets, and their unproven performance in real-world settings, remain significant constraints to their widespread adoption in clinical practice. One approach to tackle this issue is to base learning on large multi-center datasets. However, such heterogeneous datasets can introduce further biases driven by data origin, as data structures and patient cohorts may differ between hospitals. Methods In this paper, we demonstrate how mechanistic virtual patient (VP) modeling can be used to capture specific features of patients’ states and dynamics, while reducing biases introduced by heterogeneous datasets. We show how VP modeling can be used to extract relevant medical information on individual patients with suspected acute respiratory distress syndrome (ARDS) from observational data of mixed origin. We compare the results of an unsupervised learning method (clustering) in two cases: where the learning is based on original patient data and on data ‘filtered’ through a VP model. Results More robust cluster configurations were observed in clustering using the VP model-based filtered data. VP model-based clustering also reduced biases introduced by the inclusion of data from different hospitals and was able to discover an additional cluster with significant ARDS enrichment. Conclusions Our results indicate that mechanistic VP modeling can be used as a filter to significantly reduce biases introduced by learning from heterogeneous datasets and to allow improved discovery of patient cohorts driven exclusively by medical conditions. IMPACT STATEMENT Mechanistic virtual patient modeling can be used as a filter to extract relevant medical information on individual patients, significantly reducing biases introduced by learning from heterogeneous datasets and allowing improved discovery of patient cohorts driven exclusively by medical conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
www完成签到,获得积分10
3秒前
4秒前
4秒前
222发布了新的文献求助10
4秒前
黄量杰成发布了新的文献求助10
5秒前
6秒前
6秒前
sansan完成签到 ,获得积分10
7秒前
manru发布了新的文献求助10
7秒前
7秒前
8秒前
ASIS完成签到,获得积分10
8秒前
刘祥发布了新的文献求助10
8秒前
虚拟的柠檬完成签到,获得积分10
9秒前
10秒前
run发布了新的文献求助50
11秒前
赵乂发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助10
11秒前
lyt发布了新的文献求助10
12秒前
yunyueqixun完成签到 ,获得积分10
12秒前
倪侃发布了新的文献求助10
12秒前
时567完成签到,获得积分10
12秒前
manru完成签到,获得积分10
12秒前
13秒前
sure发布了新的文献求助10
13秒前
13秒前
14秒前
15秒前
15秒前
小郑不睡觉完成签到 ,获得积分10
15秒前
15秒前
16秒前
nenoaowu发布了新的文献求助10
16秒前
我是老大应助黄量杰成采纳,获得200
17秒前
Orange应助闲听花落采纳,获得10
17秒前
浮游应助222采纳,获得10
19秒前
Su应助misong采纳,获得10
19秒前
科研通AI5应助科研通管家采纳,获得10
20秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5125089
求助须知:如何正确求助?哪些是违规求助? 4329088
关于积分的说明 13489719
捐赠科研通 4163770
什么是DOI,文献DOI怎么找? 2282542
邀请新用户注册赠送积分活动 1283707
关于科研通互助平台的介绍 1222981