Computational simulation of virtual patients reduces dataset bias and improves machine learning-based detection of ARDS from noisy heterogeneous ICU datasets

计算机科学 概化理论 聚类分析 杠杆(统计) 机器学习 人工智能 数据挖掘 数学 统计
作者
Konstantin Sharafutdinov,Sebastian Fritsch,Mina Iravani,Pejman Farhadi Ghalati,Sina Saffaran,Declan G. Bates,Jonathan G. Hardman,Richard Polzin,Hannah Mayer,Gernot Marx,Johannes Bickenbach,Andreas Schuppert
出处
期刊:Cold Spring Harbor Laboratory - medRxiv 被引量:2
标识
DOI:10.1101/2022.12.02.22283033
摘要

ABSTRACT Goal Machine learning (ML) technologies that leverage large-scale patient data are promising tools predicting disease evolution in individual patients. However, the limited generalizability of ML models developed on single-center datasets, and their unproven performance in real-world settings, remain significant constraints to their widespread adoption in clinical practice. One approach to tackle this issue is to base learning on large multi-center datasets. However, such heterogeneous datasets can introduce further biases driven by data origin, as data structures and patient cohorts may differ between hospitals. Methods In this paper, we demonstrate how mechanistic virtual patient (VP) modeling can be used to capture specific features of patients’ states and dynamics, while reducing biases introduced by heterogeneous datasets. We show how VP modeling can be used to extract relevant medical information on individual patients with suspected acute respiratory distress syndrome (ARDS) from observational data of mixed origin. We compare the results of an unsupervised learning method (clustering) in two cases: where the learning is based on original patient data and on data ‘filtered’ through a VP model. Results More robust cluster configurations were observed in clustering using the VP model-based filtered data. VP model-based clustering also reduced biases introduced by the inclusion of data from different hospitals and was able to discover an additional cluster with significant ARDS enrichment. Conclusions Our results indicate that mechanistic VP modeling can be used as a filter to significantly reduce biases introduced by learning from heterogeneous datasets and to allow improved discovery of patient cohorts driven exclusively by medical conditions. IMPACT STATEMENT Mechanistic virtual patient modeling can be used as a filter to extract relevant medical information on individual patients, significantly reducing biases introduced by learning from heterogeneous datasets and allowing improved discovery of patient cohorts driven exclusively by medical conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
次次发布了新的文献求助10
刚刚
1秒前
orixero应助galioo3000采纳,获得10
1秒前
牛小牛发布了新的文献求助10
2秒前
Emma应助kiyo_v采纳,获得10
2秒前
2秒前
FashionBoy应助黑黑黑采纳,获得10
2秒前
Zhaojiaokeyan关注了科研通微信公众号
2秒前
gfi完成签到,获得积分10
3秒前
3秒前
眼睛大的问丝关注了科研通微信公众号
3秒前
123完成签到,获得积分20
3秒前
明亮的冷雪完成签到,获得积分10
3秒前
风趣的老太应助哈哈哈采纳,获得10
3秒前
陈文学发布了新的文献求助10
4秒前
彭于晏应助小王吧采纳,获得10
4秒前
4秒前
啊啊啊完成签到,获得积分10
4秒前
5秒前
ye完成签到,获得积分10
5秒前
Zzzz完成签到,获得积分20
6秒前
陆吉完成签到,获得积分10
6秒前
芷莯发布了新的文献求助10
6秒前
xy发布了新的文献求助10
6秒前
6秒前
123发布了新的文献求助10
7秒前
7秒前
Ftplanet发布了新的文献求助10
7秒前
7秒前
blue完成签到,获得积分10
8秒前
water应助多久之前采纳,获得10
8秒前
8秒前
yu发布了新的文献求助10
9秒前
9秒前
华仔应助ATREE采纳,获得10
9秒前
10秒前
梦XING发布了新的文献求助10
10秒前
小胡发布了新的文献求助10
10秒前
Cheng_Wei发布了新的文献求助10
10秒前
10秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Effective Learning and Mental Wellbeing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3974779
求助须知:如何正确求助?哪些是违规求助? 3519193
关于积分的说明 11197417
捐赠科研通 3255311
什么是DOI,文献DOI怎么找? 1797760
邀请新用户注册赠送积分活动 877150
科研通“疑难数据库(出版商)”最低求助积分说明 806187