Computational simulation of virtual patients reduces dataset bias and improves machine learning-based detection of ARDS from noisy heterogeneous ICU datasets

计算机科学 概化理论 聚类分析 杠杆(统计) 机器学习 人工智能 数据挖掘 数学 统计
作者
Konstantin Sharafutdinov,Sebastian Fritsch,Mina Iravani,Pejman Farhadi Ghalati,Sina Saffaran,Declan G. Bates,Jonathan G. Hardman,Richard Polzin,Hannah Mayer,Gernot Marx,Johannes Bickenbach,Andreas Schuppert
出处
期刊:Cold Spring Harbor Laboratory - medRxiv 被引量:2
标识
DOI:10.1101/2022.12.02.22283033
摘要

ABSTRACT Goal Machine learning (ML) technologies that leverage large-scale patient data are promising tools predicting disease evolution in individual patients. However, the limited generalizability of ML models developed on single-center datasets, and their unproven performance in real-world settings, remain significant constraints to their widespread adoption in clinical practice. One approach to tackle this issue is to base learning on large multi-center datasets. However, such heterogeneous datasets can introduce further biases driven by data origin, as data structures and patient cohorts may differ between hospitals. Methods In this paper, we demonstrate how mechanistic virtual patient (VP) modeling can be used to capture specific features of patients’ states and dynamics, while reducing biases introduced by heterogeneous datasets. We show how VP modeling can be used to extract relevant medical information on individual patients with suspected acute respiratory distress syndrome (ARDS) from observational data of mixed origin. We compare the results of an unsupervised learning method (clustering) in two cases: where the learning is based on original patient data and on data ‘filtered’ through a VP model. Results More robust cluster configurations were observed in clustering using the VP model-based filtered data. VP model-based clustering also reduced biases introduced by the inclusion of data from different hospitals and was able to discover an additional cluster with significant ARDS enrichment. Conclusions Our results indicate that mechanistic VP modeling can be used as a filter to significantly reduce biases introduced by learning from heterogeneous datasets and to allow improved discovery of patient cohorts driven exclusively by medical conditions. IMPACT STATEMENT Mechanistic virtual patient modeling can be used as a filter to extract relevant medical information on individual patients, significantly reducing biases introduced by learning from heterogeneous datasets and allowing improved discovery of patient cohorts driven exclusively by medical conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
包子牛奶完成签到,获得积分10
刚刚
scdhrg完成签到,获得积分10
刚刚
LJJ完成签到 ,获得积分10
1秒前
机智的灵萱完成签到,获得积分10
3秒前
iuhgnor发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
4秒前
略略略完成签到,获得积分10
4秒前
西子阳完成签到,获得积分10
4秒前
wwz应助xch采纳,获得10
5秒前
善学以致用应助xch采纳,获得10
5秒前
ZHANG完成签到,获得积分10
6秒前
nan完成签到,获得积分10
8秒前
vippp完成签到 ,获得积分10
8秒前
9秒前
9秒前
10秒前
可靠的安寒完成签到,获得积分10
10秒前
花花完成签到,获得积分10
11秒前
冷傲的太英完成签到 ,获得积分10
11秒前
痴情的飞绿完成签到 ,获得积分10
11秒前
soar完成签到 ,获得积分10
13秒前
小泓完成签到,获得积分10
13秒前
1111关注了科研通微信公众号
13秒前
xch完成签到,获得积分10
14秒前
MaYi完成签到,获得积分10
15秒前
myron完成签到,获得积分10
16秒前
量子星尘发布了新的文献求助50
16秒前
科研三轮车完成签到,获得积分10
17秒前
沉静胜完成签到,获得积分10
18秒前
Kinn完成签到,获得积分10
20秒前
清风徐来完成签到,获得积分10
20秒前
传奇3应助爱微笑的树懒采纳,获得10
20秒前
一只蓉馍馍完成签到,获得积分10
20秒前
自然的哈密瓜完成签到,获得积分10
21秒前
666999完成签到,获得积分10
21秒前
蒋磊完成签到 ,获得积分10
21秒前
mumuaidafu完成签到 ,获得积分10
22秒前
1111发布了新的文献求助10
22秒前
yu完成签到,获得积分10
23秒前
gzmejiji完成签到 ,获得积分10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4613661
求助须知:如何正确求助?哪些是违规求助? 4018221
关于积分的说明 12437528
捐赠科研通 3700870
什么是DOI,文献DOI怎么找? 2040947
邀请新用户注册赠送积分活动 1073711
科研通“疑难数据库(出版商)”最低求助积分说明 957365