Computational simulation of virtual patients reduces dataset bias and improves machine learning-based detection of ARDS from noisy heterogeneous ICU datasets

计算机科学 概化理论 聚类分析 杠杆(统计) 机器学习 人工智能 数据挖掘 数学 统计
作者
Konstantin Sharafutdinov,Sebastian Fritsch,Mina Iravani,Pejman Farhadi Ghalati,Sina Saffaran,Declan G. Bates,Jonathan G. Hardman,Richard Polzin,Hannah Mayer,Gernot Marx,Johannes Bickenbach,Andreas Schuppert
出处
期刊:Cold Spring Harbor Laboratory - medRxiv 被引量:2
标识
DOI:10.1101/2022.12.02.22283033
摘要

ABSTRACT Goal Machine learning (ML) technologies that leverage large-scale patient data are promising tools predicting disease evolution in individual patients. However, the limited generalizability of ML models developed on single-center datasets, and their unproven performance in real-world settings, remain significant constraints to their widespread adoption in clinical practice. One approach to tackle this issue is to base learning on large multi-center datasets. However, such heterogeneous datasets can introduce further biases driven by data origin, as data structures and patient cohorts may differ between hospitals. Methods In this paper, we demonstrate how mechanistic virtual patient (VP) modeling can be used to capture specific features of patients’ states and dynamics, while reducing biases introduced by heterogeneous datasets. We show how VP modeling can be used to extract relevant medical information on individual patients with suspected acute respiratory distress syndrome (ARDS) from observational data of mixed origin. We compare the results of an unsupervised learning method (clustering) in two cases: where the learning is based on original patient data and on data ‘filtered’ through a VP model. Results More robust cluster configurations were observed in clustering using the VP model-based filtered data. VP model-based clustering also reduced biases introduced by the inclusion of data from different hospitals and was able to discover an additional cluster with significant ARDS enrichment. Conclusions Our results indicate that mechanistic VP modeling can be used as a filter to significantly reduce biases introduced by learning from heterogeneous datasets and to allow improved discovery of patient cohorts driven exclusively by medical conditions. IMPACT STATEMENT Mechanistic virtual patient modeling can be used as a filter to extract relevant medical information on individual patients, significantly reducing biases introduced by learning from heterogeneous datasets and allowing improved discovery of patient cohorts driven exclusively by medical conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐乐应助朵乐doll采纳,获得10
1秒前
1秒前
李爱波发布了新的文献求助10
2秒前
2秒前
ayu完成签到,获得积分10
3秒前
QQ发布了新的文献求助10
3秒前
葛辉辉发布了新的文献求助10
3秒前
3秒前
3秒前
NexusExplorer应助椰椰芒芒采纳,获得10
3秒前
yzj发布了新的文献求助10
4秒前
大力的雪碧完成签到,获得积分20
5秒前
6秒前
汉堡包应助远方的大树采纳,获得10
6秒前
阿星捌发布了新的文献求助10
6秒前
7秒前
7秒前
老迟到的冰海完成签到,获得积分10
8秒前
8秒前
Lucas应助ayu采纳,获得10
8秒前
huhu完成签到,获得积分10
8秒前
9秒前
9秒前
妉甛完成签到,获得积分10
10秒前
852应助yjj采纳,获得10
12秒前
顾矜应助霍志美采纳,获得10
12秒前
djyu发布了新的文献求助10
13秒前
13秒前
闻屿完成签到,获得积分10
13秒前
13秒前
科研通AI5应助QQ采纳,获得10
13秒前
13秒前
YuLu发布了新的文献求助10
14秒前
宇文一发布了新的文献求助10
14秒前
xiaoju发布了新的文献求助10
14秒前
贰拾-2完成签到,获得积分10
14秒前
14秒前
FashionBoy应助快乐二方采纳,获得10
15秒前
烟花发布了新的文献求助10
15秒前
善学以致用应助cencen采纳,获得10
16秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
Refractory Castable Engineering 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5206131
求助须知:如何正确求助?哪些是违规求助? 4384653
关于积分的说明 13654174
捐赠科研通 4242976
什么是DOI,文献DOI怎么找? 2327791
邀请新用户注册赠送积分活动 1325532
关于科研通互助平台的介绍 1277639