亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Perspectives of Machine Learning Development on Kerogen Molecular Model Reconstruction and Shale Oil/Gas Exploitation

干酪根 油页岩 石油工程 化石燃料 页岩油 非常规油 页岩气 致密油 烃源岩 地质学 生化工程 化学 有机化学 古生物学 工程类 构造盆地
作者
Dongliang Kang,Jun Ma,Ya‐Pu Zhao
出处
期刊:Energy & Fuels [American Chemical Society]
卷期号:37 (1): 98-117 被引量:10
标识
DOI:10.1021/acs.energyfuels.2c03307
摘要

The shale revolution has provided abundant shale oil/gas resources for the world, but the efficient, sustainable, and environmentally friendly exploitation of shale oil/gas is still challenging. Kerogen is the primary hydrocarbon source of shale oil/gas. The research on the kerogen chemo-mechanical properties significantly influences the development of shale oil/gas extraction technology. Rapid reconstruction of the kerogen molecular models is the most effective way to study the generation mechanism of shale oil/gas from the bottom-up molecular level. However, due to the combinatorial explosion problem, the reconstruction complexity of kerogen increases sharply because of the kerogen's characteristics of complex origin, large molecular weight, and diverse functional groups. The traditional kerogen molecular reconstruction methods require professionals to comprehensively analyze various experimental information to approximate the actual kerogen molecular models through trial-and-error. So, the traditional methods are time and material-consuming and extremely inefficient. These shortcomings make researchers spend too much strength on the reconstruction of kerogen molecular models and cannot focus on the study of kerogen chemo-mechanical properties. For the past few years, state-of-the-art machine learning (ML) methods have been applied to intelligently reconstruct the kerogen molecular models through high-throughput and predict shale oil/gas production mechanisms. Although the current work is still in the infancy stage, ML methods are believed to be the most promising way to solve the drawbacks of traditional methods and reconstruct kerogen in reliable and large molecular weight. Hence, mechano-energetics is proposed to study the efficient development and utilization of energy based on mechanics and ML. This paper briefly reviews the development history of kerogen molecular model reconstruction methods and the research of ML in the fields of kerogen reconstruction and shale oil/gas exploitation. Some recommendations for further ML-based work are also suggested. We are convinced that the ML methods will accelerate the research of kerogen and promote the significant development of unconventional oil/gas exploitation technologies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
16秒前
16秒前
24秒前
婉莹完成签到 ,获得积分0
29秒前
46秒前
56秒前
af完成签到,获得积分10
1分钟前
1分钟前
婕仔发布了新的文献求助10
1分钟前
1分钟前
婕仔完成签到,获得积分10
1分钟前
花椰菜完成签到,获得积分20
1分钟前
沙海沉戈完成签到,获得积分0
1分钟前
科目三应助花椰菜采纳,获得10
1分钟前
2分钟前
2分钟前
花椰菜发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
然463完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
爱思考的小笨笨完成签到,获得积分10
3分钟前
小石头完成签到,获得积分10
3分钟前
小石头发布了新的文献求助10
4分钟前
4分钟前
wanci应助橙橙橙橙橙采纳,获得10
4分钟前
4分钟前
自信的冬日完成签到 ,获得积分10
4分钟前
lqhccww发布了新的文献求助10
4分钟前
5分钟前
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
5分钟前
休斯顿完成签到,获得积分10
5分钟前
桥西小河完成签到 ,获得积分10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5509712
求助须知:如何正确求助?哪些是违规求助? 4604500
关于积分的说明 14489844
捐赠科研通 4539326
什么是DOI,文献DOI怎么找? 2487475
邀请新用户注册赠送积分活动 1469865
关于科研通互助平台的介绍 1442088