亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Perspectives of Machine Learning Development on Kerogen Molecular Model Reconstruction and Shale Oil/Gas Exploitation

干酪根 油页岩 石油工程 化石燃料 页岩油 非常规油 页岩气 致密油 烃源岩 地质学 生化工程 化学 有机化学 古生物学 工程类 构造盆地
作者
Dongliang Kang,Jun Ma,Ya‐Pu Zhao
出处
期刊:Energy & Fuels [American Chemical Society]
卷期号:37 (1): 98-117 被引量:10
标识
DOI:10.1021/acs.energyfuels.2c03307
摘要

The shale revolution has provided abundant shale oil/gas resources for the world, but the efficient, sustainable, and environmentally friendly exploitation of shale oil/gas is still challenging. Kerogen is the primary hydrocarbon source of shale oil/gas. The research on the kerogen chemo-mechanical properties significantly influences the development of shale oil/gas extraction technology. Rapid reconstruction of the kerogen molecular models is the most effective way to study the generation mechanism of shale oil/gas from the bottom-up molecular level. However, due to the combinatorial explosion problem, the reconstruction complexity of kerogen increases sharply because of the kerogen's characteristics of complex origin, large molecular weight, and diverse functional groups. The traditional kerogen molecular reconstruction methods require professionals to comprehensively analyze various experimental information to approximate the actual kerogen molecular models through trial-and-error. So, the traditional methods are time and material-consuming and extremely inefficient. These shortcomings make researchers spend too much strength on the reconstruction of kerogen molecular models and cannot focus on the study of kerogen chemo-mechanical properties. For the past few years, state-of-the-art machine learning (ML) methods have been applied to intelligently reconstruct the kerogen molecular models through high-throughput and predict shale oil/gas production mechanisms. Although the current work is still in the infancy stage, ML methods are believed to be the most promising way to solve the drawbacks of traditional methods and reconstruct kerogen in reliable and large molecular weight. Hence, mechano-energetics is proposed to study the efficient development and utilization of energy based on mechanics and ML. This paper briefly reviews the development history of kerogen molecular model reconstruction methods and the research of ML in the fields of kerogen reconstruction and shale oil/gas exploitation. Some recommendations for further ML-based work are also suggested. We are convinced that the ML methods will accelerate the research of kerogen and promote the significant development of unconventional oil/gas exploitation technologies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
pan完成签到,获得积分10
刚刚
打打应助pan采纳,获得10
5秒前
jyy应助HHH采纳,获得10
7秒前
善学以致用应助鳗鱼厉采纳,获得10
9秒前
23秒前
橙子发布了新的文献求助10
27秒前
27秒前
Bizibili完成签到,获得积分10
31秒前
Maximoff发布了新的文献求助10
32秒前
彭于晏应助Schroenius采纳,获得10
32秒前
51秒前
57秒前
58秒前
annice发布了新的文献求助10
1分钟前
Schroenius发布了新的文献求助10
1分钟前
思源应助Wri采纳,获得10
1分钟前
annice完成签到,获得积分10
1分钟前
1分钟前
1分钟前
caca完成签到,获得积分10
1分钟前
pan发布了新的文献求助10
1分钟前
鳗鱼厉发布了新的文献求助10
1分钟前
善学以致用应助allenpp采纳,获得50
1分钟前
1分钟前
小蘑菇应助pan采纳,获得10
1分钟前
李昊搏完成签到,获得积分20
1分钟前
简单的尔风完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
LANER完成签到 ,获得积分10
2分钟前
骆凤灵完成签到 ,获得积分10
2分钟前
2分钟前
鳗鱼厉发布了新的文献求助10
2分钟前
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
3分钟前
Sailzyf完成签到,获得积分10
3分钟前
Schroenius完成签到,获得积分10
3分钟前
joanna完成签到,获得积分10
3分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3460082
求助须知:如何正确求助?哪些是违规求助? 3054368
关于积分的说明 9041835
捐赠科研通 2743741
什么是DOI,文献DOI怎么找? 1505166
科研通“疑难数据库(出版商)”最低求助积分说明 695609
邀请新用户注册赠送积分活动 694864