清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Interpretable deep learning model to predict the molecular classification of endometrial cancer from haematoxylin and eosin-stained whole-slide images: a combined analysis of the PORTEC randomised trials and clinical cohorts

子宫内膜癌 医学 队列 接收机工作特性 人工智能 苏木精 肿瘤科 癌症 内科学 放射科 计算机科学 免疫组织化学
作者
Sarah Fremond,Sonali Andani,Jurriaan Barkey Wolf,Jouke Dijkstra,Sinéad Melsbach,Jan J. Jobsen,Mariël Brinkhuis,Suzan Roothaan,Ina J. Jürgenliemk-Schulz,Ludy Lutgens,Remi A. Nout,Elzbieta M. van der Steen‐Banasik,Stephanie M. de Boer,Melanie Powell,Naveena Singh,Linda Mileshkin,Helen Mackay,Alexandra Léary,Hans W. Nijman,Vincent T.H.B.M. Smit
出处
期刊:The Lancet Digital Health [Elsevier]
卷期号:5 (2): e71-e82 被引量:101
标识
DOI:10.1016/s2589-7500(22)00210-2
摘要

Endometrial cancer can be molecularly classified into POLEmut, mismatch repair deficient (MMRd), p53 abnormal (p53abn), and no specific molecular profile (NSMP) subgroups. We aimed to develop an interpretable deep learning pipeline for whole-slide-image-based prediction of the four molecular classes in endometrial cancer (im4MEC), to identify morpho-molecular correlates, and to refine prognostication.This combined analysis included diagnostic haematoxylin and eosin-stained slides and molecular and clinicopathological data from 2028 patients with intermediate-to-high-risk endometrial cancer from the PORTEC-1 (n=466), PORTEC-2 (n=375), and PORTEC-3 (n=393) randomised trials and the TransPORTEC pilot study (n=110), the Medisch Spectrum Twente cohort (n=242), a case series of patients with POLEmut endometrial cancer in the Leiden Endometrial Cancer Repository (n=47), and The Cancer Genome Atlas-Uterine Corpus Endometrial Carcinoma cohort (n=395). PORTEC-3 was held out as an independent test set and a four-fold cross validation was performed. Performance was measured with the macro and class-wise area under the receiver operating characteristic curve (AUROC). Whole-slide images were segmented into tiles of 360 μm resized to 224 × 224 pixels. im4MEC was trained to learn tile-level morphological features with self-supervised learning and to molecularly classify whole-slide images with an attention mechanism. The top 20 tiles with the highest attention scores were reviewed to identify morpho-molecular correlates. Predictions of a nuclear classification deep learning model serve to derive interpretable morphological features. We analysed 5-year recurrence-free survival and explored prognostic refinement by molecular class using the Kaplan-Meier method.im4MEC attained macro-average AUROCs of 0·874 (95% CI 0·856-0·893) on four-fold cross-validation and 0·876 on the independent test set. The class-wise AUROCs were 0·849 for POLEmut (n=51), 0·844 for MMRd (n=134), 0·883 for NSMP (n=120), and 0·928 for p53abn (n=88). POLEmut and MMRd tiles had a high density of lymphocytes, p53abn tiles had strong nuclear atypia, and the morphology of POLEmut and MMRd endometrial cancer overlapped. im4MEC highlighted a low tumour-to-stroma ratio as a potentially novel characteristic feature of the NSMP class. 5-year recurrence-free survival was significantly different between im4MEC predicted molecular classes in PORTEC-3 (log-rank p<0·0001). The ten patients with aggressive p53abn endometrial cancer that was predicted as MMRd showed inflammatory morphology and appeared to have a better prognosis than patients with correctly predicted p53abn endometrial cancer (p=0·30). The four patients with NSMP endometrial cancer that was predicted as p53abn showed higher nuclear atypia and appeared to have a worse prognosis than patients with correctly predicted NSMP (p=0·13). Patients with MMRd endometrial cancer predicted as POLEmut had an excellent prognosis, as do those with true POLEmut endometrial cancer.We present the first interpretable deep learning model, im4MEC, for haematoxylin and eosin-based prediction of molecular endometrial cancer classification. im4MEC robustly identified morpho-molecular correlates and could enable further prognostic refinement of patients with endometrial cancer.The Hanarth Foundation, the Promedica Foundation, and the Swiss Federal Institutes of Technology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
披着羊皮的狼完成签到 ,获得积分10
3秒前
眼睛大的寄容完成签到 ,获得积分10
7秒前
21秒前
amen发布了新的文献求助10
24秒前
29秒前
周周完成签到 ,获得积分10
29秒前
31秒前
35秒前
量子星尘发布了新的文献求助10
58秒前
amen完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
2分钟前
2分钟前
ni完成签到 ,获得积分10
2分钟前
2分钟前
研友_nxw2xL完成签到,获得积分10
3分钟前
如歌完成签到,获得积分10
3分钟前
顾矜应助科研通管家采纳,获得10
3分钟前
3分钟前
3分钟前
一一完成签到 ,获得积分10
3分钟前
忐忑的行天完成签到,获得积分10
3分钟前
3分钟前
4分钟前
4分钟前
合不着完成签到 ,获得积分10
4分钟前
arizaki7发布了新的文献求助10
4分钟前
4分钟前
4分钟前
4分钟前
Ttimer完成签到,获得积分10
4分钟前
三三完成签到,获得积分10
5分钟前
ZXneuro完成签到,获得积分10
5分钟前
蝎子莱莱xth完成签到,获得积分10
5分钟前
氢锂钠钾铷铯钫完成签到,获得积分10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 2000
Electron Energy Loss Spectroscopy 1500
Processing of reusable surgical textiles for use in health care facilities 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5802087
求助须知:如何正确求助?哪些是违规求助? 5823877
关于积分的说明 15505890
捐赠科研通 4927971
什么是DOI,文献DOI怎么找? 2652991
邀请新用户注册赠送积分活动 1600053
关于科研通互助平台的介绍 1554890