THAN: Multimodal Transportation Recommendation With Heterogeneous Graph Attention Networks

图形 计算机科学 平滑的 嵌入 理论计算机科学 数据挖掘 算法 人工智能 计算机视觉
作者
Aikun Xu,Ping Zhong,Yilin Kang,Jiongqiang Duan,Anning Wang,Mingming Lu,Chuan Shi
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-11 被引量:1
标识
DOI:10.1109/tits.2022.3221370
摘要

Multi-modal transportation recommendation plays an important role in navigation applications. It aims to recommend a travel plan with various transport modes, such as bus, metro, taxi, bicycle, and a hybrid. Analysis of real-world large-scale navigation data shows that the correlation between the data can be represented by a graph containing different types of nodes and edges. As an emerging technology, graph neural networks (GNN) have shown powerful capabilities in representing graph data. However, existing solutions based on GNN only consider converting heterogeneous graph data into homogeneous graph data, ignoring the effects of different types of nodes and edges. In addition, those methods usually face the over-smoothing problem, which reduces the accuracy of recommendation. To this end, we propose a multi-modal T ransportation recommendation algorithm with H eterogeneous graph A ttention N etworks (THAN) based on carefully constructed heterogeneous graphs. We first design a novel graph embedding method to represent the correlation between the origin and the destination, as well as the correlation between origin-destination (OD) pairs and users. Next, a heterogeneous graph from large-scale data is built to describe the relationship between users, OD pairs, and transport modes. Then, we design a hierarchical attention mechanism with residual blocks to generate node embedding in terms of homogeneity and heterogeneity. Finally, a fusion neural layer is designed to fuse embeddings from different views and predict the proper transport mode for users. Extensive experimental results on a large-scale real-world dataset demonstrate that the performance of THAN outperforms five baselines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
小刀刀完成签到,获得积分10
2秒前
balabala完成签到,获得积分10
2秒前
眼睛大大叔完成签到,获得积分10
3秒前
3秒前
kelaibing完成签到,获得积分10
3秒前
Singularity应助LHL采纳,获得10
3秒前
萧无尽完成签到,获得积分10
4秒前
4秒前
星辰大海应助李理采纳,获得10
4秒前
5秒前
5秒前
飞龙在天完成签到,获得积分0
7秒前
华仔应助腼腆的鸵鸟采纳,获得10
9秒前
珊珊发布了新的文献求助10
9秒前
9秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
汉堡包应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
烟花应助科研通管家采纳,获得10
10秒前
田様应助科研通管家采纳,获得10
10秒前
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
英俊的铭应助科研通管家采纳,获得10
11秒前
ding应助科研通管家采纳,获得10
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
阿连完成签到,获得积分10
11秒前
浅尝离白应助科研通管家采纳,获得30
11秒前
不配.应助科研通管家采纳,获得10
11秒前
Orange应助科研通管家采纳,获得10
11秒前
11秒前
12秒前
失眠寒梦发布了新的文献求助10
12秒前
13秒前
16秒前
16秒前
yyw发布了新的文献求助100
17秒前
斯文败类应助白华苍松采纳,获得10
18秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141768
求助须知:如何正确求助?哪些是违规求助? 2792736
关于积分的说明 7804148
捐赠科研通 2449027
什么是DOI,文献DOI怎么找? 1303050
科研通“疑难数据库(出版商)”最低求助积分说明 626718
版权声明 601260