THAN: Multimodal Transportation Recommendation With Heterogeneous Graph Attention Networks

图形 计算机科学 平滑的 嵌入 理论计算机科学 数据挖掘 算法 人工智能 计算机视觉
作者
Aikun Xu,Ping Zhong,Yilin Kang,Jiongqiang Duan,Anning Wang,Mingming Lu,Chuan Shi
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-11 被引量:1
标识
DOI:10.1109/tits.2022.3221370
摘要

Multi-modal transportation recommendation plays an important role in navigation applications. It aims to recommend a travel plan with various transport modes, such as bus, metro, taxi, bicycle, and a hybrid. Analysis of real-world large-scale navigation data shows that the correlation between the data can be represented by a graph containing different types of nodes and edges. As an emerging technology, graph neural networks (GNN) have shown powerful capabilities in representing graph data. However, existing solutions based on GNN only consider converting heterogeneous graph data into homogeneous graph data, ignoring the effects of different types of nodes and edges. In addition, those methods usually face the over-smoothing problem, which reduces the accuracy of recommendation. To this end, we propose a multi-modal T ransportation recommendation algorithm with H eterogeneous graph A ttention N etworks (THAN) based on carefully constructed heterogeneous graphs. We first design a novel graph embedding method to represent the correlation between the origin and the destination, as well as the correlation between origin-destination (OD) pairs and users. Next, a heterogeneous graph from large-scale data is built to describe the relationship between users, OD pairs, and transport modes. Then, we design a hierarchical attention mechanism with residual blocks to generate node embedding in terms of homogeneity and heterogeneity. Finally, a fusion neural layer is designed to fuse embeddings from different views and predict the proper transport mode for users. Extensive experimental results on a large-scale real-world dataset demonstrate that the performance of THAN outperforms five baselines.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
liaoyoujiao发布了新的文献求助10
刚刚
刚刚
刚刚
六六发布了新的文献求助10
2秒前
王喆发布了新的文献求助10
2秒前
yyyyyyy发布了新的文献求助10
2秒前
LZNUDT发布了新的文献求助10
4秒前
hhhhhhhh发布了新的文献求助10
5秒前
彭于晏应助和谐雪曼采纳,获得10
5秒前
彭彭完成签到,获得积分10
5秒前
烟花应助Gcy丶采纳,获得10
6秒前
科研通AI6应助LZNUDT采纳,获得10
7秒前
8秒前
8秒前
程瑶瑶瑶完成签到 ,获得积分10
9秒前
9秒前
bkagyin应助科研通管家采纳,获得10
9秒前
大模型应助科研通管家采纳,获得10
9秒前
Hello应助科研通管家采纳,获得10
9秒前
LXY应助科研通管家采纳,获得10
9秒前
9秒前
Kirito应助科研通管家采纳,获得200
9秒前
Mine_cherry应助科研通管家采纳,获得10
9秒前
NexusExplorer应助科研通管家采纳,获得10
9秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
蓝天应助科研通管家采纳,获得10
9秒前
搜集达人应助科研通管家采纳,获得10
10秒前
Hello应助科研通管家采纳,获得10
10秒前
李健应助科研通管家采纳,获得10
10秒前
乐乐应助科研通管家采纳,获得10
10秒前
李健应助科研通管家采纳,获得20
10秒前
科研通AI6应助科研通管家采纳,获得10
10秒前
Mine_cherry应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
10秒前
wenhui完成签到 ,获得积分10
10秒前
10秒前
哭泣的犀牛完成签到,获得积分20
10秒前
陈泉完成签到,获得积分10
11秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5620797
求助须知:如何正确求助?哪些是违规求助? 4705375
关于积分的说明 14931806
捐赠科研通 4763300
什么是DOI,文献DOI怎么找? 2551231
邀请新用户注册赠送积分活动 1513783
关于科研通互助平台的介绍 1474672