亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

THAN: Multimodal Transportation Recommendation With Heterogeneous Graph Attention Networks

图形 计算机科学 平滑的 嵌入 理论计算机科学 数据挖掘 算法 人工智能 计算机视觉
作者
Aikun Xu,Ping Zhong,Yilin Kang,Jiongqiang Duan,Anning Wang,Mingming Lu,Chuan Shi
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-11 被引量:1
标识
DOI:10.1109/tits.2022.3221370
摘要

Multi-modal transportation recommendation plays an important role in navigation applications. It aims to recommend a travel plan with various transport modes, such as bus, metro, taxi, bicycle, and a hybrid. Analysis of real-world large-scale navigation data shows that the correlation between the data can be represented by a graph containing different types of nodes and edges. As an emerging technology, graph neural networks (GNN) have shown powerful capabilities in representing graph data. However, existing solutions based on GNN only consider converting heterogeneous graph data into homogeneous graph data, ignoring the effects of different types of nodes and edges. In addition, those methods usually face the over-smoothing problem, which reduces the accuracy of recommendation. To this end, we propose a multi-modal T ransportation recommendation algorithm with H eterogeneous graph A ttention N etworks (THAN) based on carefully constructed heterogeneous graphs. We first design a novel graph embedding method to represent the correlation between the origin and the destination, as well as the correlation between origin-destination (OD) pairs and users. Next, a heterogeneous graph from large-scale data is built to describe the relationship between users, OD pairs, and transport modes. Then, we design a hierarchical attention mechanism with residual blocks to generate node embedding in terms of homogeneity and heterogeneity. Finally, a fusion neural layer is designed to fuse embeddings from different views and predict the proper transport mode for users. Extensive experimental results on a large-scale real-world dataset demonstrate that the performance of THAN outperforms five baselines.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
薛定谔的猫完成签到,获得积分10
1秒前
BowieHuang应助科研通管家采纳,获得10
13秒前
酷波er应助景木游采纳,获得10
18秒前
研白完成签到 ,获得积分10
34秒前
呜呼完成签到,获得积分10
1分钟前
1分钟前
Yan关注了科研通微信公众号
1分钟前
1分钟前
Yan发布了新的文献求助80
1分钟前
2分钟前
赘婿应助科研通管家采纳,获得10
2分钟前
陈欣瑶完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
景木游发布了新的文献求助10
2分钟前
明理太君发布了新的文献求助10
2分钟前
2分钟前
汪汪淬冰冰完成签到,获得积分10
2分钟前
2分钟前
SimonShaw完成签到,获得积分10
3分钟前
犬来八荒发布了新的文献求助10
3分钟前
Akim应助犬来八荒采纳,获得20
3分钟前
3分钟前
明芬发布了新的文献求助10
3分钟前
tgytgy完成签到,获得积分10
3分钟前
ceeray23发布了新的文献求助20
3分钟前
ceeray23应助科研通管家采纳,获得10
4分钟前
4分钟前
您疼肚发布了新的文献求助10
4分钟前
Decheng_xiao完成签到 ,获得积分10
4分钟前
GIA完成签到,获得积分10
5分钟前
5分钟前
5分钟前
ceeray23应助科研通管家采纳,获得10
6分钟前
小二郎应助科研通管家采纳,获得10
6分钟前
ceeray23应助科研通管家采纳,获得10
6分钟前
ceeray23应助科研通管家采纳,获得10
6分钟前
ceeray23应助科研通管家采纳,获得10
6分钟前
ceeray23应助科研通管家采纳,获得10
6分钟前
生动丸子完成签到 ,获得积分10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599818
求助须知:如何正确求助?哪些是违规求助? 4685557
关于积分的说明 14838621
捐赠科研通 4671576
什么是DOI,文献DOI怎么找? 2538288
邀请新用户注册赠送积分活动 1505554
关于科研通互助平台的介绍 1470945