已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

THAN: Multimodal Transportation Recommendation With Heterogeneous Graph Attention Networks

图形 计算机科学 平滑的 嵌入 理论计算机科学 数据挖掘 算法 人工智能 计算机视觉
作者
Aikun Xu,Ping Zhong,Yilin Kang,Jiongqiang Duan,Anning Wang,Mingming Lu,Chuan Shi
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-11 被引量:1
标识
DOI:10.1109/tits.2022.3221370
摘要

Multi-modal transportation recommendation plays an important role in navigation applications. It aims to recommend a travel plan with various transport modes, such as bus, metro, taxi, bicycle, and a hybrid. Analysis of real-world large-scale navigation data shows that the correlation between the data can be represented by a graph containing different types of nodes and edges. As an emerging technology, graph neural networks (GNN) have shown powerful capabilities in representing graph data. However, existing solutions based on GNN only consider converting heterogeneous graph data into homogeneous graph data, ignoring the effects of different types of nodes and edges. In addition, those methods usually face the over-smoothing problem, which reduces the accuracy of recommendation. To this end, we propose a multi-modal T ransportation recommendation algorithm with H eterogeneous graph A ttention N etworks (THAN) based on carefully constructed heterogeneous graphs. We first design a novel graph embedding method to represent the correlation between the origin and the destination, as well as the correlation between origin-destination (OD) pairs and users. Next, a heterogeneous graph from large-scale data is built to describe the relationship between users, OD pairs, and transport modes. Then, we design a hierarchical attention mechanism with residual blocks to generate node embedding in terms of homogeneity and heterogeneity. Finally, a fusion neural layer is designed to fuse embeddings from different views and predict the proper transport mode for users. Extensive experimental results on a large-scale real-world dataset demonstrate that the performance of THAN outperforms five baselines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彬彬发布了新的文献求助10
1秒前
周平平发布了新的文献求助10
1秒前
5秒前
科研通AI6应助无误采纳,获得10
6秒前
6秒前
光亮亦竹完成签到 ,获得积分10
7秒前
8秒前
高是个科研狗完成签到 ,获得积分10
8秒前
天天开心发布了新的文献求助10
8秒前
9秒前
Lanyx完成签到,获得积分10
10秒前
11秒前
12秒前
华仔应助lcj1014采纳,获得10
12秒前
呆梨医生发布了新的文献求助10
13秒前
冷静雨南完成签到 ,获得积分10
14秒前
饱满问凝发布了新的文献求助10
15秒前
lcwait完成签到,获得积分20
15秒前
量子星尘发布了新的文献求助10
16秒前
16秒前
P1US发布了新的文献求助10
17秒前
Ava应助彬彬采纳,获得10
18秒前
19秒前
20秒前
20秒前
好好好完成签到,获得积分10
24秒前
香蕉觅云应助许诺采纳,获得10
24秒前
25秒前
英姑应助科研通管家采纳,获得10
25秒前
赘婿应助科研通管家采纳,获得10
25秒前
lcj1014发布了新的文献求助10
25秒前
26秒前
虚心的绝施完成签到 ,获得积分10
28秒前
28秒前
31秒前
32秒前
32秒前
六芒星发布了新的文献求助10
32秒前
SciGPT应助vinh采纳,获得10
33秒前
wxx发布了新的文献求助30
36秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
International Encyclopedia of Business Management 1000
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4934842
求助须知:如何正确求助?哪些是违规求助? 4202497
关于积分的说明 13057826
捐赠科研通 3976988
什么是DOI,文献DOI怎么找? 2179338
邀请新用户注册赠送积分活动 1195492
关于科研通互助平台的介绍 1106860