已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Generation of Multiple-Choice Questions From Textbook Contents of School-Level Subjects

计算机科学 管道(软件) WordNet公司 人工智能 自然语言处理 判决 任务(项目管理) 文字嵌入 多项选择 质量(理念) 选择(遗传算法) 情报检索 嵌入 语言学 哲学 管理 阅读(过程) 认识论 经济 程序设计语言
作者
Dhawaleswar Rao,Sujan Kumar Saha
出处
期刊:IEEE Transactions on Learning Technologies [Institute of Electrical and Electronics Engineers]
卷期号:16 (1): 40-52 被引量:8
标识
DOI:10.1109/tlt.2022.3224232
摘要

Multiple-choice question (MCQ) plays a significant role in educational assessment. Automatic MCQ generation has been an active research area for years, and many systems have been developed for MCQ generation. Still, we could not find any system that generates accurate MCQs from school-level textbook contents that are useful in real examinations. This observation motivated us to develop a system that generates MCQs to assess the student's recall of factual information. Also, the available systems are often domain, subject, or application-specific in nature. Although the MCQ generation task demands a specific setup, we expect a level of generalization can be achieved. In this development, we also focus on this issue. We propose a pipeline for automatic generation of MCQs from textbooks of middle-school level subjects, and the pipeline is partially subject-independent. The proposed pipeline comprises four core modules: preprocessing, sentence selection, key selection, and distractor generation. Several techniques have been employed to implement individual modules. These include sentence simplification, syntactic and semantic processing of the sentences, entity recognition, semantic relationship extraction among entities, WordNet, neural word embedding, neural sentence embedding, and computation of intersentence similarity. The system is evaluated using the National Council of Educational Research and Training (NCERT), India, textbooks for three subjects. The quality of system-generated questions is assessed by human experts using various system-level and individual module-level metrics. The experimental results demonstrate that the proposed system is capable of generating quality questions that could be useful in a real examination.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Hello应助机智明辉采纳,获得10
3秒前
abc105完成签到,获得积分10
3秒前
4秒前
大个应助西瓜采纳,获得10
4秒前
4秒前
李爱国应助明明采纳,获得10
6秒前
8秒前
9秒前
jxr发布了新的文献求助10
11秒前
123456发布了新的文献求助10
11秒前
海阔天空发布了新的文献求助10
13秒前
机智明辉发布了新的文献求助10
14秒前
蓬莱塔图完成签到 ,获得积分10
16秒前
ddj完成签到 ,获得积分10
18秒前
Felicity完成签到 ,获得积分10
18秒前
22秒前
机智明辉完成签到,获得积分10
22秒前
25秒前
123发布了新的文献求助10
27秒前
lauraaa完成签到,获得积分10
28秒前
HEIKU应助瘦瘦的寒珊采纳,获得10
29秒前
杨诚发布了新的文献求助10
30秒前
mmmm应助yunnguw采纳,获得10
33秒前
36秒前
快乐听南完成签到 ,获得积分10
37秒前
37秒前
烂烂发布了新的文献求助10
38秒前
PSY发布了新的文献求助30
41秒前
TS发布了新的文献求助10
41秒前
等待往事完成签到,获得积分10
42秒前
43秒前
lauraaa发布了新的文献求助10
43秒前
Hongtao完成签到 ,获得积分10
44秒前
w。发布了新的文献求助20
45秒前
等待往事发布了新的文献求助10
46秒前
634301059发布了新的文献求助10
47秒前
情怀应助桥豆麻袋采纳,获得10
47秒前
落后盼望完成签到,获得积分10
51秒前
123发布了新的文献求助10
52秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162121
求助须知:如何正确求助?哪些是违规求助? 2813196
关于积分的说明 7899113
捐赠科研通 2472301
什么是DOI,文献DOI怎么找? 1316428
科研通“疑难数据库(出版商)”最低求助积分说明 631305
版权声明 602142