HRInversion: High-Resolution GAN Inversion for Cross-Domain Image Synthesis

计算机科学 人工智能 程式化事实 计算机视觉 反演(地质) 像素 生物 构造盆地 宏观经济学 古生物学 经济
作者
Peng Zhou,Lingxi Xie,Bingbing Ni,Lin Liu,Qi Tian
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:33 (5): 2147-2161 被引量:9
标识
DOI:10.1109/tcsvt.2022.3222456
摘要

We investigate GAN inversion problems of using pre-trained GANs to reconstruct real images. Recent methods for such problems typically employ a VGG perceptual loss to measure the difference between images. While the perceptual loss has achieved remarkable success in various computer vision tasks, it may cause unpleasant artifacts and is sensitive to changes in input scale. This paper delivers an important message that algorithm details are crucial for achieving satisfying performance. In particular, we propose two important but undervalued design principles: (i) not down-sampling the input of the perceptual loss to avoid high-frequency artifacts; and (ii) calculating the perceptual loss using convolutional features which are robust to scale. Integrating these designs derives the proposed framework, HRInversion, that achieves superior performance in reconstructing image details. We validate the effectiveness of HRInversion on a cross-domain image synthesis task and propose a post-processing approach named local style optimization (LSO) to synthesize clean and controllable stylized images. For the evaluation of the cross-domain images, we introduce a metric named ID retrieval which captures the similarity of face identities of stylized images to content images. We also test HRInversion on non-square images. Equipped with implicit neural representation, HRInversion applies to ultra-high resolution images with more than 10 million pixels. Furthermore, we show applications of style transfer and 3D-aware GAN inversion, paving the way for extending the application range of HRInversion.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
情怀应助孙立军采纳,获得10
2秒前
JamesPei应助CSHAN采纳,获得10
3秒前
会飞的猪发布了新的文献求助10
3秒前
3秒前
拾七完成签到,获得积分10
4秒前
小蘑菇应助甜美的眼睛采纳,获得30
4秒前
狂野友儿发布了新的文献求助10
5秒前
6秒前
dgygy发布了新的文献求助10
7秒前
7秒前
7秒前
8秒前
Ray完成签到 ,获得积分10
9秒前
yexu完成签到,获得积分20
9秒前
9秒前
优雅魔镜完成签到 ,获得积分10
9秒前
10秒前
小二郎应助进取拼搏采纳,获得10
10秒前
12秒前
郑文涛发布了新的文献求助10
12秒前
谦让的牛排完成签到 ,获得积分10
12秒前
米糊发布了新的文献求助20
13秒前
邓青霞完成签到 ,获得积分10
14秒前
yy发布了新的文献求助10
14秒前
李健的小迷弟应助林一采纳,获得10
15秒前
紫心发布了新的文献求助10
15秒前
高大人发布了新的文献求助10
15秒前
15秒前
Heaven完成签到,获得积分20
16秒前
量子星尘发布了新的文献求助10
16秒前
老实和尚完成签到,获得积分10
19秒前
超帅的心锁完成签到,获得积分20
20秒前
FIN应助司空豁采纳,获得30
20秒前
wcy完成签到 ,获得积分10
21秒前
科目三应助弦弦弦采纳,获得10
21秒前
22秒前
22秒前
22秒前
车访枫完成签到 ,获得积分10
24秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956458
求助须知:如何正确求助?哪些是违规求助? 3502597
关于积分的说明 11109039
捐赠科研通 3233376
什么是DOI,文献DOI怎么找? 1787315
邀请新用户注册赠送积分活动 870585
科研通“疑难数据库(出版商)”最低求助积分说明 802122