3D-IncNet: Head and Neck (H&N) Primary Tumors Segmentation and Survival Prediction

残余物 计算机科学 卷积(计算机科学) 分割 掷骰子 人工智能 编码器 头颈部癌 水准点(测量) 模式识别(心理学) 医学 放射科 算法 放射治疗 数学 外科 统计 大地测量学 人工神经网络 地理 操作系统
作者
Abdul Qayyum,Abdesslam Benzinou,Imran Razzak,Moona Mazher,Thanh Thi Nguyen,Domènec Puig,Fatemeh Vafaee
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (3): 1185-1194 被引量:3
标识
DOI:10.1109/jbhi.2022.3219445
摘要

Cancer begins when healthy cells change and grow out of control, forming a mass called a tumor. Head and neck (H&N) cancers usually develop in or around the head and neck, including the mouth (oral cavity), nose and sinuses, throat (pharynx), and voice box (larynx). 4% of all cancers are H&N cancers with a very low survival rate (a five-year survival rate of 64.7%). FDG-PET/CT imaging is often used for early diagnosis and staging of H&N tumors, thus improving these patients' survival rates. This work presents a novel 3D-Inception-Residual aided with 3D depth-wise convolution and squeeze and excitation block. We introduce a 3D depth-wise convolution-inception encoder consisting of an additional 3D squeeze and excitation block and a 3D depth-wise convolution-based residual learning decoder (3D-IncNet), which not only helps to recalibrate the channel-wise features but adaptively through explicit inter-dependencies modeling but also integrate the coarse and fine features resulting in accurate tumor segmentation. We further demonstrate the effectiveness of inception-residual encoder-decoder architecture in achieving better dice scores and the impact of depth-wise convolution in lowering the computational cost. We applied random forest for survival prediction on deep, clinical, and radiomics features. Experiments are conducted on the benchmark HECKTOR21 challenge, which showed significantly better performance by surpassing the state-of-the-artwork and achieved 0.836 and 0.811 concordance index and dice scores, respectively. We made the model and code publicly available.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阿三完成签到 ,获得积分10
刚刚
情怀应助元宝团子采纳,获得10
1秒前
lzq发布了新的文献求助30
1秒前
1秒前
2秒前
丘比特应助宇文青寒采纳,获得10
2秒前
汪锦程完成签到,获得积分10
2秒前
2秒前
2秒前
管箴完成签到,获得积分10
3秒前
nsk810431231发布了新的文献求助10
3秒前
ShowMaker应助Chen采纳,获得30
4秒前
4秒前
思源应助GIM采纳,获得10
4秒前
情怀应助XW采纳,获得10
5秒前
5秒前
ww发布了新的文献求助10
6秒前
科研小菜发布了新的文献求助10
6秒前
xinyi完成签到,获得积分10
7秒前
犹豫觅翠完成签到,获得积分10
7秒前
遇w完成签到,获得积分10
7秒前
phw2333应助清图采纳,获得20
8秒前
管箴发布了新的文献求助10
8秒前
ameng_xu发布了新的文献求助10
8秒前
添酱发布了新的文献求助10
8秒前
情怀应助hesongwen采纳,获得10
9秒前
杨瑞发布了新的文献求助10
9秒前
汪锦程发布了新的文献求助10
10秒前
堇妗发布了新的文献求助30
10秒前
10秒前
长期素食发布了新的文献求助10
10秒前
11秒前
11秒前
霸气的念云完成签到,获得积分10
11秒前
12秒前
honghong发布了新的文献求助10
12秒前
13秒前
giving完成签到 ,获得积分10
13秒前
14秒前
Kevin Li完成签到,获得积分10
14秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3151195
求助须知:如何正确求助?哪些是违规求助? 2802651
关于积分的说明 7849434
捐赠科研通 2460087
什么是DOI,文献DOI怎么找? 1309478
科研通“疑难数据库(出版商)”最低求助积分说明 628915
版权声明 601760