Prediction of HPV-Associated Genetic Diversity for Squamous Cell Carcinoma of Head and Neck Cancer Based on $$^{18}$$F-FDG PET/CT

正电子发射断层摄影术 头颈部鳞状细胞癌 头颈部癌 卷积神经网络 模态(人机交互) 磁共振成像 癌症 医学 人乳头瘤病毒 头颈部 深度学习 计算机科学 放射科 核医学 放射治疗 人工智能 内科学 外科
作者
Yuqi Fang,Jorge D. Oldan,Weili Lin,Travis P. Schrank,Wendell G. Yarbrough,Н. В. Исаева,Mingxia Liu
出处
期刊:Lecture Notes in Computer Science 卷期号:: 358-366
标识
DOI:10.1007/978-3-031-21014-3_37
摘要

The relationship of human papillomavirus (HPV) to squamous cell carcinoma of the head and neck has been long known and explored. However, it has not been investigated whether cancer areas have the prognostic value of genetic diversity within HPV. Most existing studies in head and neck cancer analysis only involve a single imaging modality, e.g., computed tomography (CT) or magnetic resonance imaging (MRI), which may not provide complementary and diverse information for prediction task. Recently, positron emission tomography with 2-deoxy-2-[fluorine-18]fluoro-D-glucose integrated with CT ( $$^{18}$$ F-FDG PET/CT) has become a powerful imaging tool. In this study, we integrate these two imaging modalities (i.e., PET and CT) for HPV-associated genetic diversity prediction. Specifically, we design a deep 3D convolutional neural network (called PCNet) to learn PET and CT features in a data-driven manner, consisting of two branches (with each one corresponding to a specific data modality). The generated intermediate feature maps are further fed into a fully-connected layer for abstraction. Moreover, radiomic characteristics, which have been verified as a prognostic indicator in head and neck cancer, are concatenated with these data-driven deep learning features for final prediction. Experiments on 50 subjects demonstrate the effectiveness of our proposed PCNet. This is among the first attempts to explore the potential of PET/CT in differentiating genetic diversity in patients with HPV-associated squamous cell carcinoma of the head and neck.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
126发布了新的文献求助10
刚刚
LIUHUIHUI发布了新的文献求助10
刚刚
1秒前
2秒前
汉堡包应助111采纳,获得10
2秒前
kk发布了新的文献求助10
2秒前
CH发布了新的文献求助10
2秒前
3秒前
ky发布了新的文献求助10
3秒前
打打应助贾土土采纳,获得10
4秒前
九姑娘完成签到 ,获得积分10
4秒前
时空路人完成签到,获得积分10
6秒前
Orange应助Peter采纳,获得10
6秒前
量子星尘发布了新的文献求助10
6秒前
天天快乐应助Wacky采纳,获得10
8秒前
zhang005on发布了新的文献求助10
8秒前
zxin完成签到,获得积分10
9秒前
9秒前
苏大强发布了新的文献求助10
10秒前
xx发布了新的文献求助10
10秒前
顾矜应助Ausia采纳,获得10
10秒前
10秒前
11秒前
youele完成签到,获得积分20
12秒前
okay好好完成签到 ,获得积分10
12秒前
12秒前
王岳伦完成签到,获得积分20
12秒前
13秒前
酷波er应助炙热冰蓝采纳,获得10
13秒前
13秒前
所所应助wybzk采纳,获得10
14秒前
15秒前
贝妮完成签到,获得积分10
15秒前
16秒前
youele发布了新的文献求助10
16秒前
Akim应助ky采纳,获得10
16秒前
tuyfytjt完成签到,获得积分20
16秒前
学术疯子发布了新的文献求助10
16秒前
奋斗土豆完成签到 ,获得积分10
16秒前
量子星尘发布了新的文献求助10
17秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The Insulin Resistance Epidemic: Uncovering the Root Cause of Chronic Disease  500
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3662667
求助须知:如何正确求助?哪些是违规求助? 3223466
关于积分的说明 9751694
捐赠科研通 2933372
什么是DOI,文献DOI怎么找? 1606058
邀请新用户注册赠送积分活动 758266
科研通“疑难数据库(出版商)”最低求助积分说明 734754