已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Predicting surface solar radiation using a hybrid radiative Transfer–Machine learning model

航空网 环境科学 辐射传输 梯度升压 随机森林 遥感 气溶胶 反照率(炼金术) 大气辐射传输码 多层感知器 气象学 人工神经网络 计算机科学 机器学习 物理 光学 地质学 艺术 表演艺术 艺术史
作者
Yehu Lu,Lunche Wang,Canming Zhu,Ling Zou,Ming Zhang,Lan Feng,Qian Cao
出处
期刊:Renewable & Sustainable Energy Reviews [Elsevier]
卷期号:173: 113105-113105 被引量:24
标识
DOI:10.1016/j.rser.2022.113105
摘要

Solar radiation is one of the cleanest sources of renewable energy, and it affects the carbon sink functions of terrestrial ecosystems. Although efforts have been made to establish solar radiation observation stations around the world, their coverage remains limited. Hence, the development of a wide variety of models and techniques is indispensable for obtaining effective solar radiation data. The aim of this study is to develop hybrid models with high computational speed and high accuracy to estimate global solar radiation (GSR) and quantify the uncertainty in GSR simulations caused by uncertainty in the measurements of atmospheric and surface parameters. The radiative transfer model (RTM) library for radiative transfer (LibRadtran) was coupled with six machine learning models: extreme gradient boosting (XGBoost), random forest (RF), multivariate adaptive regression splines (MARS), multilayer perceptron (MLP), deep neural networks (DNNs), and light gradient boosting machine (LightGBM). The estimated GSR was first compared to the inversion values of the GSR provided by the Aerosol Robotic Network (AERONET) and then validated using ground-based measurements at three locations in China from 2005 to 2018. The results showed that the RTM-RF is superior in terms of computational efficiency and performance, with a mean absolute errors (MAE) and coefficients of determination (R2) of 15.57 W m−2 and 0.98, respectively. Under clear sky conditions, aerosol optical depth (AOD) contributed the most to the accuracy of GSR estimates, with an average contribution of 57.95%. The measurement uncertainty due to the asymmetry factor, AOD, single-scattering albedo, and land surface albedo (LSA) can explain the differences in GSR between RTM estimates and GSR observations at the Lulin (20.33 vs. 20.91 W m−2), Wuhan (−1.40 vs. 14.58 W m−2), and Xianghe (7.28 vs. 14.32 W m−2) sites. Our study supports the use of physical models combined with machine learning models to estimate GSR and provides valuable scientific information for large-area solar radiation estimations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
深情安青应助醋溜爆肚儿采纳,获得10
4秒前
6秒前
yjihn发布了新的文献求助10
7秒前
昏睡的铭完成签到,获得积分20
7秒前
8秒前
10秒前
12秒前
笨笨娇完成签到 ,获得积分10
12秒前
hollow发布了新的文献求助10
12秒前
12秒前
13秒前
polaris发布了新的文献求助10
13秒前
15秒前
juan完成签到,获得积分20
15秒前
15秒前
从容黎昕发布了新的文献求助10
15秒前
风起发布了新的文献求助10
16秒前
18秒前
毛豆应助yg采纳,获得10
18秒前
man发布了新的文献求助10
19秒前
19秒前
20秒前
chen发布了新的文献求助10
20秒前
20秒前
20秒前
freebra发布了新的文献求助10
21秒前
冷面完成签到,获得积分10
22秒前
Charon完成签到,获得积分10
23秒前
polaris完成签到,获得积分10
23秒前
Meimei发布了新的文献求助10
24秒前
不安的晓灵完成签到 ,获得积分10
24秒前
24秒前
26秒前
自信向梦发布了新的文献求助10
26秒前
katu发布了新的文献求助10
26秒前
27秒前
pluto应助Becky采纳,获得10
29秒前
96完成签到 ,获得积分10
31秒前
yjihn发布了新的文献求助10
32秒前
高分求助中
Sustainability in ’Tides Chemistry 2000
Studien zur Ideengeschichte der Gesetzgebung 1000
The ACS Guide to Scholarly Communication 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Handbook of the Mammals of the World – Volume 3: Primates 805
Ethnicities: Media, Health, and Coping 800
Gerard de Lairesse : an artist between stage and studio 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3072358
求助须知:如何正确求助?哪些是违规求助? 2726133
关于积分的说明 7492841
捐赠科研通 2373734
什么是DOI,文献DOI怎么找? 1258703
科研通“疑难数据库(出版商)”最低求助积分说明 610359
版权声明 596952