亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Predicting surface solar radiation using a hybrid radiative Transfer–Machine learning model

航空网 环境科学 辐射传输 梯度升压 随机森林 遥感 气溶胶 反照率(炼金术) 大气辐射传输码 多层感知器 气象学 人工神经网络 计算机科学 机器学习 物理 光学 地质学 艺术 表演艺术 艺术史
作者
Yunbo Lu,Lunche Wang,Canming Zhu,Ling Zou,Ming Zhang,Lan Feng,Qian Cao
出处
期刊:Renewable & Sustainable Energy Reviews [Elsevier BV]
卷期号:173: 113105-113105 被引量:47
标识
DOI:10.1016/j.rser.2022.113105
摘要

Solar radiation is one of the cleanest sources of renewable energy, and it affects the carbon sink functions of terrestrial ecosystems. Although efforts have been made to establish solar radiation observation stations around the world, their coverage remains limited. Hence, the development of a wide variety of models and techniques is indispensable for obtaining effective solar radiation data. The aim of this study is to develop hybrid models with high computational speed and high accuracy to estimate global solar radiation (GSR) and quantify the uncertainty in GSR simulations caused by uncertainty in the measurements of atmospheric and surface parameters. The radiative transfer model (RTM) library for radiative transfer (LibRadtran) was coupled with six machine learning models: extreme gradient boosting (XGBoost), random forest (RF), multivariate adaptive regression splines (MARS), multilayer perceptron (MLP), deep neural networks (DNNs), and light gradient boosting machine (LightGBM). The estimated GSR was first compared to the inversion values of the GSR provided by the Aerosol Robotic Network (AERONET) and then validated using ground-based measurements at three locations in China from 2005 to 2018. The results showed that the RTM-RF is superior in terms of computational efficiency and performance, with a mean absolute errors (MAE) and coefficients of determination (R2) of 15.57 W m−2 and 0.98, respectively. Under clear sky conditions, aerosol optical depth (AOD) contributed the most to the accuracy of GSR estimates, with an average contribution of 57.95%. The measurement uncertainty due to the asymmetry factor, AOD, single-scattering albedo, and land surface albedo (LSA) can explain the differences in GSR between RTM estimates and GSR observations at the Lulin (20.33 vs. 20.91 W m−2), Wuhan (−1.40 vs. 14.58 W m−2), and Xianghe (7.28 vs. 14.32 W m−2) sites. Our study supports the use of physical models combined with machine learning models to estimate GSR and provides valuable scientific information for large-area solar radiation estimations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123321完成签到 ,获得积分10
58秒前
gszy1975发布了新的文献求助10
1分钟前
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
lixiaorui发布了新的文献求助10
1分钟前
CipherSage应助难过的踏歌采纳,获得10
1分钟前
1分钟前
MYYYZ发布了新的文献求助10
2分钟前
酒渡完成签到,获得积分10
2分钟前
2分钟前
lixiaorui发布了新的文献求助30
2分钟前
2分钟前
帅气琦发布了新的文献求助10
2分钟前
2分钟前
nchudddd发布了新的文献求助10
2分钟前
领导范儿应助帅气琦采纳,获得10
2分钟前
2分钟前
3分钟前
3分钟前
3分钟前
充电宝应助科研通管家采纳,获得10
3分钟前
3分钟前
3分钟前
3分钟前
欣欣完成签到 ,获得积分10
3分钟前
研友_VZG7GZ应助MY采纳,获得30
4分钟前
4分钟前
和风完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
4分钟前
4分钟前
5分钟前
5分钟前
5分钟前
5分钟前
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5254426
求助须知:如何正确求助?哪些是违规求助? 4417336
关于积分的说明 13751271
捐赠科研通 4290010
什么是DOI,文献DOI怎么找? 2353954
邀请新用户注册赠送积分活动 1350565
关于科研通互助平台的介绍 1310718