Predicting surface solar radiation using a hybrid radiative Transfer–Machine learning model

航空网 环境科学 辐射传输 梯度升压 随机森林 遥感 气溶胶 反照率(炼金术) 大气辐射传输码 多层感知器 气象学 人工神经网络 计算机科学 机器学习 物理 光学 地质学 艺术 表演艺术 艺术史
作者
Yunbo Lu,Lunche Wang,Canming Zhu,Ling Zou,Ming Zhang,Lan Feng,Qian Cao
出处
期刊:Renewable & Sustainable Energy Reviews [Elsevier]
卷期号:173: 113105-113105 被引量:47
标识
DOI:10.1016/j.rser.2022.113105
摘要

Solar radiation is one of the cleanest sources of renewable energy, and it affects the carbon sink functions of terrestrial ecosystems. Although efforts have been made to establish solar radiation observation stations around the world, their coverage remains limited. Hence, the development of a wide variety of models and techniques is indispensable for obtaining effective solar radiation data. The aim of this study is to develop hybrid models with high computational speed and high accuracy to estimate global solar radiation (GSR) and quantify the uncertainty in GSR simulations caused by uncertainty in the measurements of atmospheric and surface parameters. The radiative transfer model (RTM) library for radiative transfer (LibRadtran) was coupled with six machine learning models: extreme gradient boosting (XGBoost), random forest (RF), multivariate adaptive regression splines (MARS), multilayer perceptron (MLP), deep neural networks (DNNs), and light gradient boosting machine (LightGBM). The estimated GSR was first compared to the inversion values of the GSR provided by the Aerosol Robotic Network (AERONET) and then validated using ground-based measurements at three locations in China from 2005 to 2018. The results showed that the RTM-RF is superior in terms of computational efficiency and performance, with a mean absolute errors (MAE) and coefficients of determination (R2) of 15.57 W m−2 and 0.98, respectively. Under clear sky conditions, aerosol optical depth (AOD) contributed the most to the accuracy of GSR estimates, with an average contribution of 57.95%. The measurement uncertainty due to the asymmetry factor, AOD, single-scattering albedo, and land surface albedo (LSA) can explain the differences in GSR between RTM estimates and GSR observations at the Lulin (20.33 vs. 20.91 W m−2), Wuhan (−1.40 vs. 14.58 W m−2), and Xianghe (7.28 vs. 14.32 W m−2) sites. Our study supports the use of physical models combined with machine learning models to estimate GSR and provides valuable scientific information for large-area solar radiation estimations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
美丽梦桃完成签到,获得积分10
刚刚
受伤破茧发布了新的文献求助10
1秒前
菠萝鸡翅根完成签到,获得积分10
1秒前
1秒前
andjdd完成签到,获得积分10
2秒前
2秒前
燕尔蓝发布了新的文献求助10
2秒前
3秒前
3秒前
5秒前
小乐儿~完成签到,获得积分10
6秒前
啦啦啦发布了新的文献求助10
6秒前
Hello应助WZH采纳,获得10
7秒前
贝贝发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
8秒前
NanXin发布了新的文献求助10
8秒前
8秒前
腼腆的小刺猬完成签到,获得积分10
9秒前
安静白羊完成签到,获得积分10
9秒前
10秒前
科研民工发布了新的文献求助10
10秒前
在水一方应助榆木小鸟采纳,获得10
10秒前
10秒前
无私凡梅完成签到,获得积分10
11秒前
Jasper应助charint采纳,获得10
11秒前
英吉利25发布了新的文献求助10
11秒前
12秒前
12秒前
13秒前
Zj完成签到,获得积分10
14秒前
14秒前
shuangcheng发布了新的文献求助10
15秒前
fj完成签到,获得积分10
15秒前
16秒前
奶茶发布了新的文献求助10
16秒前
16秒前
cherish完成签到,获得积分20
16秒前
16秒前
newbee完成签到 ,获得积分10
16秒前
思源应助糟糕的便当采纳,获得10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5728057
求助须知:如何正确求助?哪些是违规求助? 5311160
关于积分的说明 15312957
捐赠科研通 4875318
什么是DOI,文献DOI怎么找? 2618704
邀请新用户注册赠送积分活动 1568361
关于科研通互助平台的介绍 1525003