Intrinsic Defects and the Inducing Conduction Mechanism of Langasite-Type High-Temperature Piezoelectric Crystals

材料科学 电阻率和电导率 晶体缺陷 Crystal(编程语言) 凝聚态物理 电导率 压电 热传导 电子 复合材料 化学 工程类 物理化学 物理 电气工程 量子力学 程序设计语言 计算机科学
作者
Linyu Bai,Dongjie� Liu,Xian Zhao,Fapeng Yu,Yanlu Li
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:15 (2): 3152-3162 被引量:4
标识
DOI:10.1021/acsami.2c19480
摘要

Increasing the crystal resistivity is critically important for enhancing the signal-to-noise ratio and improving the sensing capability of high-temperature piezoelectric sensors based on langasite-type crystals. The resistivity of structural ordered langasite-type crystals is much higher compared to that of the disordered crystals. Here, we selected structural ordered Ca3TaGa3Si2O14 (CTGS) and disordered La3Ga5SiO14 (LGS) as representatives to investigate the microscopic conduction mechanism and further reveal the origin of the different resistivities of the ordered and disordered langasite-type crystals at elevated temperatures. By combining first-principles calculations and experimental investigations, we found that the different conductivity behaviors of the ordered and disordered crystals originate from different types of point defects formed in the crystal and their different contributions to the conductivity. For the disordered LGS crystal, the oxygen vacancies are apt to be formed at high temperatures, promoting the transition of valence electrons and yielding high conductivity. For the ordered CTGS crystal, the dominant TaGa antisite defects can introduce an electron-hole recombination center in the electronic band gap, significantly shortening the carrier lifetime and thus reducing the conductivity. This provides effective guidance to improve the resistivity performance of langasite-type crystals at high temperatures by optimizing the experimental conditions, such as oxygen atmosphere treatment, antisite defect modification, etc.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Orange应助科研通管家采纳,获得30
刚刚
CodeCraft应助科研通管家采纳,获得10
刚刚
刚刚
orixero应助科研通管家采纳,获得10
刚刚
顾矜应助科研通管家采纳,获得10
1秒前
彭于晏应助科研通管家采纳,获得10
1秒前
FashionBoy应助汉克爱学习采纳,获得10
1秒前
Andy_Cheung应助科研通管家采纳,获得10
1秒前
慕青应助科研通管家采纳,获得10
1秒前
1秒前
隐形曼青应助科研通管家采纳,获得10
1秒前
iNk应助科研通管家采纳,获得20
1秒前
思源应助科研通管家采纳,获得10
1秒前
Owen应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
Hello应助科研通管家采纳,获得10
2秒前
Singularity应助科研通管家采纳,获得10
2秒前
华仔应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
iNk应助科研通管家采纳,获得20
2秒前
d.zhang发布了新的文献求助10
2秒前
Akim应助科研通管家采纳,获得10
2秒前
彭于晏应助科研通管家采纳,获得10
3秒前
星辰大海应助科研通管家采纳,获得10
3秒前
蒙圈完成签到 ,获得积分10
3秒前
3秒前
打打应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
SciGPT应助科研通管家采纳,获得10
3秒前
4秒前
4秒前
易止完成签到 ,获得积分10
4秒前
VDC发布了新的文献求助30
5秒前
迅速的网络完成签到,获得积分10
5秒前
7秒前
9秒前
9秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3738035
求助须知:如何正确求助?哪些是违规求助? 3281550
关于积分的说明 10025988
捐赠科研通 2998302
什么是DOI,文献DOI怎么找? 1645228
邀请新用户注册赠送积分活动 782660
科研通“疑难数据库(出版商)”最低求助积分说明 749882