Predictive model for early functional outcomes following acute care after traumatic brain injuries: A machine learning-based development and validation study

接收机工作特性 医学 逻辑回归 曲线下面积 创伤性脑损伤 机器学习 内科学 物理疗法 急诊医学 计算机科学 精神科
作者
Meng Zhao,Ming Guo,Zihao Wang,Haimin Liu,Xue Bai,Shengnan Cui,Xiaopeng Guo,Lu Gao,Lingling Gao,Aimin Liao,Bing Xing,Yi Wang
出处
期刊:Injury-international Journal of The Care of The Injured [Elsevier BV]
卷期号:54 (3): 896-903 被引量:3
标识
DOI:10.1016/j.injury.2023.01.004
摘要

IntroductionFew studies on early functional outcomes following acute care after traumatic brain injury (TBI) are available. The aim of this study was to develop and validate a predictive model for functional outcomes at discharge for TBI patients using machine learning methods.Patients and methodsIn this retrospective study, data from 5281 TBI patients admitted for acute care who were identified in the Beijing hospital discharge abstract database were analysed. Data from 4181 patients in 52 tertiary hospitals were used for model derivation and internal validation. Data from 1100 patients in 21 secondary hospitals were used for external validation. A poor outcome was defined as a Barthel Index (BI) score ≤ 60 at discharge. Logistic regression, XGBoost, random forest, decision tree, and back propagation neural network models were used to fit classification models. Performance was evaluated by the area under the receiver operating characteristic curve (AUC), the area under the precision-recall curve (AP), calibration plots, sensitivity/recall, specificity, positive predictive value (PPV)/precision, negative predictive value (NPV) and F1-score.ResultsCompared to the other models, the random forest model demonstrated superior performance in internal validation (AUC of 0.856, AP of 0.786, and F1-score of 0.724) and external validation (AUC of 0.779, AP of 0.630, and F1-score of 0.604). The sensitivity/recall, specificity, PPV/precision, and NPV of the model were 71.8%, 69.2%, 52.2%, and 84.0%, respectively, in external validation. The BI score at admission, age, use of nonsurgical treatment, neurosurgery status, and modified Charlson Comorbidity Index were identified as the top 5 predictors for functional outcome at discharge.ConclusionsWe established a random forest model that performed well in predicting early functional outcomes following acute care after TBI. The model has utility for informing decision-making regarding patient management and discharge planning and for facilitating health care quality assessment and resource allocation for TBI treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fusheng完成签到 ,获得积分10
7秒前
浮生完成签到 ,获得积分10
12秒前
xinjie完成签到,获得积分10
14秒前
Will完成签到,获得积分10
19秒前
cuddly完成签到 ,获得积分10
20秒前
掉头发的小白完成签到,获得积分10
21秒前
不想看文献完成签到 ,获得积分10
24秒前
25秒前
当女遇到乔完成签到 ,获得积分10
25秒前
独行者完成签到,获得积分10
26秒前
眼睛大的电脑完成签到,获得积分10
26秒前
28秒前
敏敏发布了新的文献求助10
29秒前
木木完成签到 ,获得积分10
30秒前
量子星尘发布了新的文献求助10
30秒前
JamesPei应助科研通管家采纳,获得10
31秒前
彭于晏应助科研通管家采纳,获得10
31秒前
如意2023完成签到 ,获得积分10
31秒前
fomo完成签到,获得积分10
35秒前
nagi发布了新的文献求助10
38秒前
jfeng完成签到,获得积分10
40秒前
JN完成签到,获得积分10
48秒前
忐忑的书桃完成签到 ,获得积分10
49秒前
qaplay完成签到 ,获得积分0
49秒前
友好语风完成签到,获得积分10
50秒前
CLTTTt完成签到,获得积分10
51秒前
yk完成签到,获得积分10
53秒前
甜美的初蓝完成签到 ,获得积分10
57秒前
早安完成签到 ,获得积分10
1分钟前
初昀杭完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
LIU完成签到 ,获得积分10
1分钟前
1分钟前
nianshu完成签到 ,获得积分0
1分钟前
starwan完成签到 ,获得积分10
1分钟前
松松发布了新的文献求助20
1分钟前
hooddy123459发布了新的文献求助10
1分钟前
wenhuanwenxian完成签到 ,获得积分10
1分钟前
happy完成签到 ,获得积分10
1分钟前
拾壹完成签到,获得积分10
1分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038066
求助须知:如何正确求助?哪些是违规求助? 3575779
关于积分的说明 11373801
捐赠科研通 3305584
什么是DOI,文献DOI怎么找? 1819239
邀请新用户注册赠送积分活动 892655
科研通“疑难数据库(出版商)”最低求助积分说明 815022