亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Predictive model for early functional outcomes following acute care after traumatic brain injuries: A machine learning-based development and validation study

接收机工作特性 医学 逻辑回归 曲线下面积 创伤性脑损伤 机器学习 内科学 物理疗法 急诊医学 计算机科学 精神科
作者
Meng Zhao,Ming Guo,Zihao Wang,Haimin Liu,Xue Bai,Shengnan Cui,Xiaopeng Guo,Lu Gao,Lingling Gao,Aimin Liao,Bing Xing,Yi Wang
出处
期刊:Injury-international Journal of The Care of The Injured [Elsevier BV]
卷期号:54 (3): 896-903 被引量:3
标识
DOI:10.1016/j.injury.2023.01.004
摘要

IntroductionFew studies on early functional outcomes following acute care after traumatic brain injury (TBI) are available. The aim of this study was to develop and validate a predictive model for functional outcomes at discharge for TBI patients using machine learning methods.Patients and methodsIn this retrospective study, data from 5281 TBI patients admitted for acute care who were identified in the Beijing hospital discharge abstract database were analysed. Data from 4181 patients in 52 tertiary hospitals were used for model derivation and internal validation. Data from 1100 patients in 21 secondary hospitals were used for external validation. A poor outcome was defined as a Barthel Index (BI) score ≤ 60 at discharge. Logistic regression, XGBoost, random forest, decision tree, and back propagation neural network models were used to fit classification models. Performance was evaluated by the area under the receiver operating characteristic curve (AUC), the area under the precision-recall curve (AP), calibration plots, sensitivity/recall, specificity, positive predictive value (PPV)/precision, negative predictive value (NPV) and F1-score.ResultsCompared to the other models, the random forest model demonstrated superior performance in internal validation (AUC of 0.856, AP of 0.786, and F1-score of 0.724) and external validation (AUC of 0.779, AP of 0.630, and F1-score of 0.604). The sensitivity/recall, specificity, PPV/precision, and NPV of the model were 71.8%, 69.2%, 52.2%, and 84.0%, respectively, in external validation. The BI score at admission, age, use of nonsurgical treatment, neurosurgery status, and modified Charlson Comorbidity Index were identified as the top 5 predictors for functional outcome at discharge.ConclusionsWe established a random forest model that performed well in predicting early functional outcomes following acute care after TBI. The model has utility for informing decision-making regarding patient management and discharge planning and for facilitating health care quality assessment and resource allocation for TBI treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
传奇3应助科研通管家采纳,获得10
48秒前
英俊的铭应助科研通管家采纳,获得10
48秒前
1分钟前
科研通AI5应助Betty采纳,获得10
1分钟前
MchemG应助彩色的谷云采纳,获得10
1分钟前
吴彦祖完成签到,获得积分10
1分钟前
xixilulixiu完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
tree发布了新的文献求助10
2分钟前
大模型应助tree采纳,获得10
2分钟前
Lucas应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
tree完成签到,获得积分20
2分钟前
辉辉完成签到,获得积分10
3分钟前
wodetaiyangLLL完成签到 ,获得积分10
3分钟前
黑白完成签到 ,获得积分10
6分钟前
6分钟前
Qian完成签到 ,获得积分10
6分钟前
情怀应助Ying采纳,获得20
6分钟前
7分钟前
7分钟前
科研通AI5应助忧虑的安青采纳,获得10
7分钟前
juejue333完成签到,获得积分10
7分钟前
7分钟前
7分钟前
Ying发布了新的文献求助20
7分钟前
8分钟前
Betty发布了新的文献求助10
8分钟前
Betty完成签到,获得积分10
8分钟前
科目三应助科研通管家采纳,获得10
8分钟前
科研通AI2S应助科研通管家采纳,获得10
8分钟前
SciGPT应助科研通管家采纳,获得10
8分钟前
笨笨完成签到,获得积分10
8分钟前
9分钟前
9分钟前
思源应助嘿嘿嘿侦探社采纳,获得10
9分钟前
9分钟前
9分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968504
求助须知:如何正确求助?哪些是违规求助? 3513278
关于积分的说明 11167234
捐赠科研通 3248660
什么是DOI,文献DOI怎么找? 1794386
邀请新用户注册赠送积分活动 875030
科研通“疑难数据库(出版商)”最低求助积分说明 804638