Predictive model for early functional outcomes following acute care after traumatic brain injuries: A machine learning-based development and validation study

接收机工作特性 医学 逻辑回归 曲线下面积 创伤性脑损伤 机器学习 内科学 物理疗法 急诊医学 计算机科学 精神科
作者
Meng Zhao,Ming Guo,Zihao Wang,Haimin Liu,Xue Bai,Shengnan Cui,Xiaopeng Guo,Lu Gao,Lingling Gao,Aimin Liao,Bing Xing,Yi Wang
出处
期刊:Injury-international Journal of The Care of The Injured [Elsevier]
卷期号:54 (3): 896-903 被引量:3
标识
DOI:10.1016/j.injury.2023.01.004
摘要

IntroductionFew studies on early functional outcomes following acute care after traumatic brain injury (TBI) are available. The aim of this study was to develop and validate a predictive model for functional outcomes at discharge for TBI patients using machine learning methods.Patients and methodsIn this retrospective study, data from 5281 TBI patients admitted for acute care who were identified in the Beijing hospital discharge abstract database were analysed. Data from 4181 patients in 52 tertiary hospitals were used for model derivation and internal validation. Data from 1100 patients in 21 secondary hospitals were used for external validation. A poor outcome was defined as a Barthel Index (BI) score ≤ 60 at discharge. Logistic regression, XGBoost, random forest, decision tree, and back propagation neural network models were used to fit classification models. Performance was evaluated by the area under the receiver operating characteristic curve (AUC), the area under the precision-recall curve (AP), calibration plots, sensitivity/recall, specificity, positive predictive value (PPV)/precision, negative predictive value (NPV) and F1-score.ResultsCompared to the other models, the random forest model demonstrated superior performance in internal validation (AUC of 0.856, AP of 0.786, and F1-score of 0.724) and external validation (AUC of 0.779, AP of 0.630, and F1-score of 0.604). The sensitivity/recall, specificity, PPV/precision, and NPV of the model were 71.8%, 69.2%, 52.2%, and 84.0%, respectively, in external validation. The BI score at admission, age, use of nonsurgical treatment, neurosurgery status, and modified Charlson Comorbidity Index were identified as the top 5 predictors for functional outcome at discharge.ConclusionsWe established a random forest model that performed well in predicting early functional outcomes following acute care after TBI. The model has utility for informing decision-making regarding patient management and discharge planning and for facilitating health care quality assessment and resource allocation for TBI treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YUE完成签到,获得积分10
1秒前
迷路羽毛发布了新的文献求助30
1秒前
JIE完成签到,获得积分10
2秒前
企鹅嗷嗷完成签到 ,获得积分10
5秒前
5秒前
6秒前
生sheng发布了新的文献求助10
7秒前
yxdjzwx完成签到,获得积分10
7秒前
misterliu完成签到,获得积分10
8秒前
和谐续完成签到 ,获得积分10
9秒前
积极慕梅完成签到,获得积分10
9秒前
米饭辣椒完成签到,获得积分10
9秒前
闪闪柔发布了新的文献求助10
9秒前
10秒前
11秒前
缓慢谷雪发布了新的文献求助10
11秒前
殷勤的樱桃完成签到 ,获得积分10
12秒前
Hello应助洁净的元龙采纳,获得10
13秒前
linggle发布了新的文献求助10
13秒前
sammi米完成签到,获得积分10
15秒前
15秒前
慕青应助补喵采纳,获得10
15秒前
淡淡菠萝发布了新的文献求助10
16秒前
rediculous发布了新的文献求助10
16秒前
18秒前
研友_8KX15L完成签到,获得积分10
18秒前
Hello应助缓慢谷雪采纳,获得10
19秒前
梁作迪发布了新的文献求助10
19秒前
buzenilei发布了新的文献求助10
20秒前
20秒前
lixiaoya完成签到,获得积分10
22秒前
22秒前
社畜一生发布了新的文献求助10
22秒前
CodeCraft应助rediculous采纳,获得10
22秒前
归海海之完成签到,获得积分10
23秒前
23秒前
23秒前
23秒前
积极的板栗完成签到 ,获得积分10
24秒前
26秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140765
求助须知:如何正确求助?哪些是违规求助? 2791647
关于积分的说明 7799859
捐赠科研通 2447961
什么是DOI,文献DOI怎么找? 1302261
科研通“疑难数据库(出版商)”最低求助积分说明 626487
版权声明 601194