已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Predictive model for early functional outcomes following acute care after traumatic brain injuries: A machine learning-based development and validation study

接收机工作特性 医学 逻辑回归 曲线下面积 创伤性脑损伤 机器学习 内科学 物理疗法 急诊医学 计算机科学 精神科
作者
Meng Zhao,Ming Guo,Zihao Wang,Haimin Liu,Xue Bai,Shengnan Cui,Xiaopeng Guo,Lu Gao,Lingling Gao,Aimin Liao,Bing Xing,Yi Wang
出处
期刊:Injury-international Journal of The Care of The Injured [Elsevier BV]
卷期号:54 (3): 896-903 被引量:3
标识
DOI:10.1016/j.injury.2023.01.004
摘要

IntroductionFew studies on early functional outcomes following acute care after traumatic brain injury (TBI) are available. The aim of this study was to develop and validate a predictive model for functional outcomes at discharge for TBI patients using machine learning methods.Patients and methodsIn this retrospective study, data from 5281 TBI patients admitted for acute care who were identified in the Beijing hospital discharge abstract database were analysed. Data from 4181 patients in 52 tertiary hospitals were used for model derivation and internal validation. Data from 1100 patients in 21 secondary hospitals were used for external validation. A poor outcome was defined as a Barthel Index (BI) score ≤ 60 at discharge. Logistic regression, XGBoost, random forest, decision tree, and back propagation neural network models were used to fit classification models. Performance was evaluated by the area under the receiver operating characteristic curve (AUC), the area under the precision-recall curve (AP), calibration plots, sensitivity/recall, specificity, positive predictive value (PPV)/precision, negative predictive value (NPV) and F1-score.ResultsCompared to the other models, the random forest model demonstrated superior performance in internal validation (AUC of 0.856, AP of 0.786, and F1-score of 0.724) and external validation (AUC of 0.779, AP of 0.630, and F1-score of 0.604). The sensitivity/recall, specificity, PPV/precision, and NPV of the model were 71.8%, 69.2%, 52.2%, and 84.0%, respectively, in external validation. The BI score at admission, age, use of nonsurgical treatment, neurosurgery status, and modified Charlson Comorbidity Index were identified as the top 5 predictors for functional outcome at discharge.ConclusionsWe established a random forest model that performed well in predicting early functional outcomes following acute care after TBI. The model has utility for informing decision-making regarding patient management and discharge planning and for facilitating health care quality assessment and resource allocation for TBI treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
迟大猫应助科研通管家采纳,获得10
刚刚
正直天佑应助科研通管家采纳,获得10
刚刚
科研通AI5应助科研通管家采纳,获得10
刚刚
huiya应助科研通管家采纳,获得10
刚刚
wanci应助科研通管家采纳,获得10
刚刚
Lucas应助科研通管家采纳,获得10
刚刚
科研通AI5应助科研通管家采纳,获得10
刚刚
刚刚
huiya应助科研通管家采纳,获得10
刚刚
Grayball应助科研通管家采纳,获得10
1秒前
Grayball应助科研通管家采纳,获得10
1秒前
1秒前
Grayball应助科研通管家采纳,获得10
1秒前
Grayball应助科研通管家采纳,获得10
1秒前
Grayball应助科研通管家采纳,获得10
1秒前
Owen应助科研通管家采纳,获得10
1秒前
1秒前
王逗逗发布了新的文献求助10
3秒前
3秒前
5秒前
handsomecat完成签到,获得积分10
5秒前
liuguoqing发布了新的文献求助10
6秒前
爆米花应助LSS采纳,获得10
7秒前
明亮无颜发布了新的文献求助10
8秒前
乐橙发布了新的文献求助10
10秒前
11秒前
Tuesday发布了新的文献求助10
12秒前
深情安青应助王逗逗采纳,获得10
15秒前
乐橙完成签到,获得积分10
16秒前
哈哈发布了新的文献求助10
16秒前
赘婿应助BioRick采纳,获得10
18秒前
maox1aoxin应助地平采纳,获得30
19秒前
香蕉觅云应助呵呵采纳,获得10
22秒前
23秒前
言堇完成签到 ,获得积分10
23秒前
虚拟的柠檬完成签到,获得积分10
24秒前
领导范儿应助Odingers采纳,获得10
26秒前
cckyt完成签到,获得积分10
27秒前
windtalker发布了新的文献求助10
27秒前
所所应助哈哈采纳,获得10
29秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Ciprofol versus propofol for adult sedation in gastrointestinal endoscopic procedures: a systematic review and meta-analysis 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3671101
求助须知:如何正确求助?哪些是违规求助? 3228010
关于积分的说明 9777928
捐赠科研通 2938234
什么是DOI,文献DOI怎么找? 1609784
邀请新用户注册赠送积分活动 760457
科研通“疑难数据库(出版商)”最低求助积分说明 735962