Predictive model for early functional outcomes following acute care after traumatic brain injuries: A machine learning-based development and validation study

接收机工作特性 医学 逻辑回归 曲线下面积 创伤性脑损伤 机器学习 内科学 物理疗法 急诊医学 计算机科学 精神科
作者
Meng Zhao,Ming Guo,Zihao Wang,Haimin Liu,Xue Bai,Shengnan Cui,Xiaopeng Guo,Lu Gao,Lingling Gao,Aimin Liao,Bing Xing,Yi Wang
出处
期刊:Injury-international Journal of The Care of The Injured [Elsevier BV]
卷期号:54 (3): 896-903 被引量:3
标识
DOI:10.1016/j.injury.2023.01.004
摘要

IntroductionFew studies on early functional outcomes following acute care after traumatic brain injury (TBI) are available. The aim of this study was to develop and validate a predictive model for functional outcomes at discharge for TBI patients using machine learning methods.Patients and methodsIn this retrospective study, data from 5281 TBI patients admitted for acute care who were identified in the Beijing hospital discharge abstract database were analysed. Data from 4181 patients in 52 tertiary hospitals were used for model derivation and internal validation. Data from 1100 patients in 21 secondary hospitals were used for external validation. A poor outcome was defined as a Barthel Index (BI) score ≤ 60 at discharge. Logistic regression, XGBoost, random forest, decision tree, and back propagation neural network models were used to fit classification models. Performance was evaluated by the area under the receiver operating characteristic curve (AUC), the area under the precision-recall curve (AP), calibration plots, sensitivity/recall, specificity, positive predictive value (PPV)/precision, negative predictive value (NPV) and F1-score.ResultsCompared to the other models, the random forest model demonstrated superior performance in internal validation (AUC of 0.856, AP of 0.786, and F1-score of 0.724) and external validation (AUC of 0.779, AP of 0.630, and F1-score of 0.604). The sensitivity/recall, specificity, PPV/precision, and NPV of the model were 71.8%, 69.2%, 52.2%, and 84.0%, respectively, in external validation. The BI score at admission, age, use of nonsurgical treatment, neurosurgery status, and modified Charlson Comorbidity Index were identified as the top 5 predictors for functional outcome at discharge.ConclusionsWe established a random forest model that performed well in predicting early functional outcomes following acute care after TBI. The model has utility for informing decision-making regarding patient management and discharge planning and for facilitating health care quality assessment and resource allocation for TBI treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
York Chang发布了新的文献求助10
3秒前
5秒前
5秒前
CipherSage应助友好驳采纳,获得10
5秒前
6秒前
MUAN完成签到 ,获得积分10
6秒前
8秒前
daxiong发布了新的文献求助10
9秒前
哈哈哈完成签到,获得积分10
9秒前
9秒前
10秒前
学习使我快乐完成签到 ,获得积分10
11秒前
simon完成签到,获得积分10
11秒前
wuhuofeng发布了新的文献求助10
11秒前
我想当二郎神完成签到,获得积分10
12秒前
14秒前
友好驳完成签到,获得积分10
17秒前
la完成签到,获得积分10
17秒前
17秒前
zhiwei完成签到 ,获得积分0
19秒前
初之发布了新的文献求助20
22秒前
猪猪hero发布了新的文献求助10
22秒前
23秒前
wuhuofeng完成签到,获得积分10
24秒前
24秒前
York Chang完成签到,获得积分10
24秒前
丫头发布了新的文献求助10
24秒前
24秒前
26秒前
王者归来发布了新的文献求助200
28秒前
伊星儿发布了新的文献求助10
28秒前
阿朱关注了科研通微信公众号
28秒前
29秒前
大模型应助zsy采纳,获得10
29秒前
初之完成签到,获得积分20
30秒前
猪猪hero发布了新的文献求助10
31秒前
mt13发布了新的文献求助10
33秒前
上官若男应助是江江哥啊采纳,获得10
34秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3975426
求助须知:如何正确求助?哪些是违规求助? 3519848
关于积分的说明 11199831
捐赠科研通 3256122
什么是DOI,文献DOI怎么找? 1798124
邀请新用户注册赠送积分活动 877386
科研通“疑难数据库(出版商)”最低求助积分说明 806305