Predictive model for early functional outcomes following acute care after traumatic brain injuries: A machine learning-based development and validation study

接收机工作特性 医学 逻辑回归 曲线下面积 创伤性脑损伤 机器学习 内科学 物理疗法 急诊医学 计算机科学 精神科
作者
Meng Zhao,Ming Guo,Zihao Wang,Haimin Liu,Xue Bai,Shengnan Cui,Xiaopeng Guo,Lu Gao,Lingling Gao,Aimin Liao,Bing Xing,Yi Wang
出处
期刊:Injury-international Journal of The Care of The Injured [Elsevier BV]
卷期号:54 (3): 896-903 被引量:3
标识
DOI:10.1016/j.injury.2023.01.004
摘要

IntroductionFew studies on early functional outcomes following acute care after traumatic brain injury (TBI) are available. The aim of this study was to develop and validate a predictive model for functional outcomes at discharge for TBI patients using machine learning methods.Patients and methodsIn this retrospective study, data from 5281 TBI patients admitted for acute care who were identified in the Beijing hospital discharge abstract database were analysed. Data from 4181 patients in 52 tertiary hospitals were used for model derivation and internal validation. Data from 1100 patients in 21 secondary hospitals were used for external validation. A poor outcome was defined as a Barthel Index (BI) score ≤ 60 at discharge. Logistic regression, XGBoost, random forest, decision tree, and back propagation neural network models were used to fit classification models. Performance was evaluated by the area under the receiver operating characteristic curve (AUC), the area under the precision-recall curve (AP), calibration plots, sensitivity/recall, specificity, positive predictive value (PPV)/precision, negative predictive value (NPV) and F1-score.ResultsCompared to the other models, the random forest model demonstrated superior performance in internal validation (AUC of 0.856, AP of 0.786, and F1-score of 0.724) and external validation (AUC of 0.779, AP of 0.630, and F1-score of 0.604). The sensitivity/recall, specificity, PPV/precision, and NPV of the model were 71.8%, 69.2%, 52.2%, and 84.0%, respectively, in external validation. The BI score at admission, age, use of nonsurgical treatment, neurosurgery status, and modified Charlson Comorbidity Index were identified as the top 5 predictors for functional outcome at discharge.ConclusionsWe established a random forest model that performed well in predicting early functional outcomes following acute care after TBI. The model has utility for informing decision-making regarding patient management and discharge planning and for facilitating health care quality assessment and resource allocation for TBI treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ghost举报sns八丘求助涉嫌违规
刚刚
善学以致用应助weiweiwei采纳,获得10
刚刚
简化为完成签到,获得积分10
1秒前
1秒前
zhn0607发布了新的文献求助10
1秒前
犹豫的君浩完成签到 ,获得积分10
1秒前
alyza发布了新的文献求助10
1秒前
bkagyin应助西西弗斯玩石头采纳,获得10
1秒前
天天快乐应助太阳采纳,获得10
1秒前
2秒前
uu完成签到,获得积分10
2秒前
2秒前
耿昭完成签到,获得积分10
2秒前
Ceaser完成签到,获得积分10
2秒前
科目三应助PangXidan采纳,获得10
2秒前
stst完成签到,获得积分10
2秒前
BulingQAQ完成签到,获得积分10
3秒前
yznfly应助SG采纳,获得50
3秒前
3秒前
爱听歌小馒头完成签到,获得积分10
3秒前
风中冰香应助肯瑞恩哭哭采纳,获得10
3秒前
会飞的猪qq完成签到,获得积分10
4秒前
123jopop完成签到,获得积分10
4秒前
天天快乐应助Magicbunny采纳,获得10
4秒前
heaven完成签到,获得积分10
4秒前
4秒前
zhen9203发布了新的文献求助20
4秒前
无脚鸟完成签到,获得积分10
5秒前
5秒前
陶醉寒珊发布了新的文献求助10
5秒前
炸毛可乐完成签到,获得积分20
5秒前
王会跑完成签到,获得积分10
5秒前
专注鼠标完成签到,获得积分10
5秒前
6秒前
Loooong发布了新的文献求助10
6秒前
6秒前
xiaosu完成签到,获得积分20
6秒前
学术蝗虫2726完成签到,获得积分10
6秒前
玉玉鼠发布了新的文献求助10
7秒前
ding应助li采纳,获得10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5257403
求助须知:如何正确求助?哪些是违规求助? 4419507
关于积分的说明 13756551
捐赠科研通 4292770
什么是DOI,文献DOI怎么找? 2355654
邀请新用户注册赠送积分活动 1352106
关于科研通互助平台的介绍 1312849