亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Prediction model for the evolution of hydrogen concentration under leakage in hydrogen refueling station using deep neural networks

泄漏(经济) 计算机科学 人工神经网络 卷积神经网络 环境科学 可靠性工程 人工智能 工程类 化学 宏观经济学 经济 有机化学
作者
Xu He,Depeng Kong,Xirui Yu,Ping Ping,Gongquan Wang,Rongqi Peng,Yue Zhang,Xinyi Dai
出处
期刊:International Journal of Hydrogen Energy [Elsevier BV]
卷期号:51: 702-712 被引量:24
标识
DOI:10.1016/j.ijhydene.2022.12.102
摘要

The widespread risks of leakages in the hydrogen industry chain require a method that can quickly predict the consequences of accidents, especially in the hydrogen refueling station (HRS). This paper presents a surrogate model based on physics-informed neural network (PINN) that can predict the distribution of hydrogen concentration after a leakage. The proposed Physics-informed Convolutional Long Short-Term Memory Network (PI-ConvLSTM) model improves the concentration prediction results at the gas cloud boundary by adding a physical constraint term to the loss function of the ConvLSTM model. The concentration distributions after hydrogen leakage at HRS simulated by FLACS are used as the training samples, and the concentration data are converted into grayscale maps for training. The hydrogen concentration prediction method with the proposed surrogate model as the core achieves fast prediction of the gas cloud concentration distribution with acceptable accuracy. It is observed that the method can greatly reduce the prediction time of the consequences of hydrogen leak accidents with the surrogate model already trained. It can provide real-time risk warning and consequence prediction for hydrogen refueling station leakage accidents.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
RAIN发布了新的文献求助10
24秒前
小马甲应助顺利的尔芙采纳,获得10
25秒前
量子星尘发布了新的文献求助10
31秒前
jjy完成签到 ,获得积分10
31秒前
所所应助RAIN采纳,获得10
35秒前
1分钟前
烟花应助科研通管家采纳,获得10
1分钟前
顺利的尔芙完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
思源应助风中的雅柏采纳,获得10
1分钟前
1分钟前
2分钟前
mama完成签到 ,获得积分10
2分钟前
lixuebin完成签到 ,获得积分10
2分钟前
星际舟完成签到,获得积分10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
Ava应助顺利的尔芙采纳,获得10
3分钟前
情怀应助科研通管家采纳,获得10
3分钟前
充电宝应助科研通管家采纳,获得10
3分钟前
3分钟前
丝垚完成签到 ,获得积分10
3分钟前
Akim应助无风采纳,获得10
4分钟前
孙雪君完成签到,获得积分10
4分钟前
孙雪君发布了新的文献求助10
4分钟前
xiaolang2004完成签到,获得积分10
4分钟前
无花果应助lu采纳,获得10
4分钟前
无用的老董西完成签到 ,获得积分10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
无风完成签到 ,获得积分10
4分钟前
nickel完成签到,获得积分10
5分钟前
花无双完成签到,获得积分0
5分钟前
5分钟前
星辰大海应助科研通管家采纳,获得10
5分钟前
yx_cheng应助科研通管家采纳,获得10
5分钟前
大模型应助科研通管家采纳,获得10
5分钟前
无风完成签到,获得积分10
5分钟前
无风发布了新的文献求助10
5分钟前
量子星尘发布了新的文献求助10
6分钟前
上官若男应助崔哥采纳,获得30
6分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4008271
求助须知:如何正确求助?哪些是违规求助? 3548012
关于积分的说明 11298627
捐赠科研通 3282865
什么是DOI,文献DOI怎么找? 1810249
邀请新用户注册赠送积分活动 885957
科研通“疑难数据库(出版商)”最低求助积分说明 811188