Mutual Information Estimation-Based Disentangled Representation Network for Medical Image Fusion

相互信息 计算机科学 图像融合 人工智能 代表(政治) 图像(数学) 融合 表达式(计算机科学) 模式识别(心理学) 计算机视觉 数据挖掘 政治学 法学 程序设计语言 语言学 哲学 政治
作者
Wanwan Huang,Han Zhang,Zeyuan Li,Yanbin Yin
标识
DOI:10.1109/bibm55620.2022.9995221
摘要

Deep learning-based method for medical image fusion has become a hot topic in recent years. However, they ignore the expression of the most important features in image fusion and only extract the general features for medical image fusion, which will restrict the expression of unique information on the fusion image. To address this restriction, we propose a novel disentangled representation network for medical image fusion with mutual information estimation, which extract the disentangled features of medical image fusion, i.e., the shared and exclusive features between multi-model medical images. In our method, we use the cross mutual information method to obtain the shared features of each modality pair, which enforce the fusion network to achieve the maximum of mutual information estimation for multi-modal medical images. The exclusive features are extracted by the adversarial objective method and it constrains the fusion network with the optimization to the minimum of mutual information estimation between shared and exclusive features. These disentangled features effectively take the interpretative advantages and make the fusion image retaining more details from source images as well as improving the visual quality of fusion image. Our method has achieved better results than several state-of-the-art methods. Both qualitative and quantitative experiments have proved the superiority of our method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
MZP应助小赵采纳,获得10
1秒前
呆呆完成签到,获得积分10
3秒前
Lucas应助笛卡尔采纳,获得10
5秒前
5秒前
科研通AI2S应助无情黑米采纳,获得10
6秒前
充电宝应助翘啊采纳,获得10
7秒前
星辰大海应助wwc采纳,获得10
10秒前
ifanyz完成签到 ,获得积分10
13秒前
Akim应助科研通管家采纳,获得10
13秒前
子车茗应助科研通管家采纳,获得20
13秒前
Hort应助科研通管家采纳,获得10
13秒前
852应助科研通管家采纳,获得10
13秒前
CipherSage应助科研通管家采纳,获得10
13秒前
半夏微凉发布了新的文献求助10
13秒前
Flanker应助科研通管家采纳,获得10
13秒前
Owen应助科研通管家采纳,获得10
14秒前
14秒前
14秒前
14秒前
16秒前
论文2完成签到 ,获得积分10
17秒前
爆米花应助陈瑶采纳,获得30
17秒前
sakiko发布了新的文献求助10
18秒前
19秒前
上官若男应助烛夜黎采纳,获得10
19秒前
万能图书馆应助灵巧书文采纳,获得30
21秒前
彭于晏应助myw采纳,获得10
22秒前
23秒前
干净青亦发布了新的文献求助10
23秒前
chr发布了新的文献求助10
27秒前
魔幻的白羊完成签到,获得积分10
28秒前
31秒前
woyufengtian完成签到,获得积分10
31秒前
小赵完成签到,获得积分20
33秒前
33秒前
36秒前
陈瑶发布了新的文献求助30
36秒前
Jasper应助欣慰的无颜采纳,获得10
37秒前
37秒前
38秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
Research on managing groups and teams 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3329591
求助须知:如何正确求助?哪些是违规求助? 2959170
关于积分的说明 8594608
捐赠科研通 2637675
什么是DOI,文献DOI怎么找? 1443672
科研通“疑难数据库(出版商)”最低求助积分说明 668807
邀请新用户注册赠送积分活动 656231