Mutual Information Estimation-Based Disentangled Representation Network for Medical Image Fusion

相互信息 计算机科学 图像融合 人工智能 代表(政治) 图像(数学) 融合 表达式(计算机科学) 模式识别(心理学) 计算机视觉 数据挖掘 政治学 法学 程序设计语言 语言学 哲学 政治
作者
Wanwan Huang,Han Zhang,Zeyuan Li,Yanbin Yin
标识
DOI:10.1109/bibm55620.2022.9995221
摘要

Deep learning-based method for medical image fusion has become a hot topic in recent years. However, they ignore the expression of the most important features in image fusion and only extract the general features for medical image fusion, which will restrict the expression of unique information on the fusion image. To address this restriction, we propose a novel disentangled representation network for medical image fusion with mutual information estimation, which extract the disentangled features of medical image fusion, i.e., the shared and exclusive features between multi-model medical images. In our method, we use the cross mutual information method to obtain the shared features of each modality pair, which enforce the fusion network to achieve the maximum of mutual information estimation for multi-modal medical images. The exclusive features are extracted by the adversarial objective method and it constrains the fusion network with the optimization to the minimum of mutual information estimation between shared and exclusive features. These disentangled features effectively take the interpretative advantages and make the fusion image retaining more details from source images as well as improving the visual quality of fusion image. Our method has achieved better results than several state-of-the-art methods. Both qualitative and quantitative experiments have proved the superiority of our method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
幸福的玫瑰应助inno采纳,获得10
刚刚
1秒前
1秒前
中级奥术师完成签到,获得积分10
2秒前
早春完成签到,获得积分10
2秒前
xxxx.发布了新的文献求助30
2秒前
茗牌棉花完成签到,获得积分20
2秒前
2秒前
jiakang完成签到,获得积分10
2秒前
2秒前
科研通AI6应助虚心念桃采纳,获得10
2秒前
沐雨橙风完成签到,获得积分10
3秒前
灰白完成签到,获得积分10
4秒前
4秒前
4秒前
小二郎应助大迷糊采纳,获得10
5秒前
5秒前
大模型应助中森菜龙采纳,获得10
5秒前
ChatGPT发布了新的文献求助10
6秒前
烟酒僧完成签到,获得积分10
6秒前
6秒前
mio发布了新的文献求助10
7秒前
7秒前
7秒前
CipherSage应助风中擎采纳,获得10
7秒前
zzz发布了新的文献求助10
8秒前
8秒前
okisseven7完成签到,获得积分10
8秒前
程佑贵完成签到,获得积分20
9秒前
陶醉鞅发布了新的文献求助10
9秒前
10秒前
曾维嘉完成签到,获得积分10
10秒前
10秒前
11秒前
Cheney发布了新的文献求助10
11秒前
11秒前
11秒前
香橙完成签到,获得积分10
12秒前
凶狠的小兔子完成签到 ,获得积分10
12秒前
Hello应助EMM采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Investigative Interviewing: Psychology and Practice 300
Atlas of Anatomy (Fifth Edition) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5285920
求助须知:如何正确求助?哪些是违规求助? 4438798
关于积分的说明 13818833
捐赠科研通 4320377
什么是DOI,文献DOI怎么找? 2371398
邀请新用户注册赠送积分活动 1366944
关于科研通互助平台的介绍 1330406