亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep CNN for COPD identification by Multi-View snapshot integration of 3D airway tree and lung field

慢性阻塞性肺病 气道 计算机科学 卷积神经网络 医学 人工智能 内科学 外科
作者
Yanan Wu,Ran Du,Jie Feng,Shouliang Qi,Haowen Pang,Shuyue Xia,Wei Qian
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:79: 104162-104162 被引量:15
标识
DOI:10.1016/j.bspc.2022.104162
摘要

Chronic obstructive pulmonary disease (COPD) is a complex and irreversible respiratory disease with potential morphological abnormalities of the airway and lung fields. To date, whether and how these abnormalities can be used to identify COPD is unknown. This study developed a deep convolutional neural network (CNN) integrating the airway tree and lung field morphologies to identify COPD. We represent 3D airway and lung fields through multi-view 2D snapshots and their integration via deep CNN, to estimate the possibility of COPD. We constructed two datasets named Dataset 1 including 380 participants (190 COPD and 190 healthy controls) for training and validation and Dataset 2 including 201 participants (101 COPD and 100 healthy controls) for testing. First, the 3D airway tree and lung field are automatically extracted from computed tomography (CT) images, and 2D snapshots in nine views are captured. Second, the proposed ResNet-26 is trained with each view of snapshots as input. Finally, majority voting of nine models is performed to identify COPD. The accuracy (ACC) of the single-view ResNet-26 model (ventral, dorsal, and isometric view of airway; front, rear, left, right, top, and bottom view of lung field) is 0.900, 0.873, 0.889, 0.868, 0.824, 0.876, 0.861, 0.839, and 0.884, respectively. For the multi-view ResNet-26 model of airway tree and lung field, the ACC is 0.913 and 0.895, respectively. For the model integrating all nine views, the ACC eventually reaches as high as 0.947. The deep CNN model identifies COPD through integrating morphology of the airway tree and lung field extracted from CT images. A different view of 2D snapshots represents various characteristics of the 3D airway tree and lung field. The integration of multiple views can improve the performance of COPD prediction. The CNN model provides a potential method of identifying COPD via CT scans.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
111完成签到 ,获得积分10
1秒前
29秒前
深情安青应助英俊书白采纳,获得10
44秒前
领导范儿应助bruna采纳,获得10
1分钟前
勤劳善良的胖蜜蜂完成签到 ,获得积分10
1分钟前
Archers完成签到 ,获得积分10
2分钟前
2分钟前
英俊书白发布了新的文献求助10
2分钟前
许之北完成签到 ,获得积分10
2分钟前
Polymer72应助科研通管家采纳,获得10
3分钟前
Polymer72应助科研通管家采纳,获得10
3分钟前
游大达完成签到,获得积分0
3分钟前
3分钟前
英俊书白完成签到,获得积分20
4分钟前
伏城完成签到 ,获得积分10
4分钟前
hanliulaixi完成签到 ,获得积分10
4分钟前
4分钟前
科研通AI2S应助雪上一枝蒿采纳,获得10
5分钟前
星辰大海应助科研通管家采纳,获得10
5分钟前
5分钟前
小强完成签到 ,获得积分10
5分钟前
6分钟前
maclogos完成签到,获得积分10
7分钟前
Polymer72应助科研通管家采纳,获得10
7分钟前
Polymer72应助科研通管家采纳,获得10
7分钟前
Polymer72应助科研通管家采纳,获得10
7分钟前
7分钟前
DrleedsG发布了新的文献求助200
8分钟前
9分钟前
Polymer72应助科研通管家采纳,获得10
9分钟前
Polymer72应助科研通管家采纳,获得10
9分钟前
Polymer72应助科研通管家采纳,获得10
9分钟前
Polymer72应助科研通管家采纳,获得10
9分钟前
米糖安发布了新的文献求助10
9分钟前
lisaltp完成签到,获得积分10
9分钟前
米糖安完成签到,获得积分10
10分钟前
xinqianying完成签到 ,获得积分10
10分钟前
iris完成签到,获得积分20
10分钟前
DrleedsG完成签到,获得积分10
10分钟前
11分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
RNAの科学 ―時代を拓く生体分子― 金井 昭夫(編) 1000
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
Education and Upward Social Mobility in China: Imagining Positive Sociology with Bourdieu 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3353523
求助须知:如何正确求助?哪些是违规求助? 2978145
关于积分的说明 8683835
捐赠科研通 2659514
什么是DOI,文献DOI怎么找? 1456277
科研通“疑难数据库(出版商)”最低求助积分说明 674310
邀请新用户注册赠送积分活动 665036