Deep CNN for COPD identification by Multi-View snapshot integration of 3D airway tree and lung field

慢性阻塞性肺病 气道 计算机科学 卷积神经网络 医学 人工智能 内科学 外科
作者
Yanan Wu,Ran Du,Jie Feng,Shouliang Qi,Haowen Pang,Shuyue Xia,Wei Qian
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:79: 104162-104162 被引量:20
标识
DOI:10.1016/j.bspc.2022.104162
摘要

Chronic obstructive pulmonary disease (COPD) is a complex and irreversible respiratory disease with potential morphological abnormalities of the airway and lung fields. To date, whether and how these abnormalities can be used to identify COPD is unknown. This study developed a deep convolutional neural network (CNN) integrating the airway tree and lung field morphologies to identify COPD. We represent 3D airway and lung fields through multi-view 2D snapshots and their integration via deep CNN, to estimate the possibility of COPD. We constructed two datasets named Dataset 1 including 380 participants (190 COPD and 190 healthy controls) for training and validation and Dataset 2 including 201 participants (101 COPD and 100 healthy controls) for testing. First, the 3D airway tree and lung field are automatically extracted from computed tomography (CT) images, and 2D snapshots in nine views are captured. Second, the proposed ResNet-26 is trained with each view of snapshots as input. Finally, majority voting of nine models is performed to identify COPD. The accuracy (ACC) of the single-view ResNet-26 model (ventral, dorsal, and isometric view of airway; front, rear, left, right, top, and bottom view of lung field) is 0.900, 0.873, 0.889, 0.868, 0.824, 0.876, 0.861, 0.839, and 0.884, respectively. For the multi-view ResNet-26 model of airway tree and lung field, the ACC is 0.913 and 0.895, respectively. For the model integrating all nine views, the ACC eventually reaches as high as 0.947. The deep CNN model identifies COPD through integrating morphology of the airway tree and lung field extracted from CT images. A different view of 2D snapshots represents various characteristics of the 3D airway tree and lung field. The integration of multiple views can improve the performance of COPD prediction. The CNN model provides a potential method of identifying COPD via CT scans.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
小郭发布了新的文献求助10
1秒前
1秒前
2秒前
2秒前
狠毒的小龙虾完成签到,获得积分10
2秒前
Hello应助tx采纳,获得10
3秒前
桐桐应助哈哈哈采纳,获得10
3秒前
3秒前
Zz完成签到 ,获得积分10
3秒前
4秒前
5秒前
可儿完成签到,获得积分10
5秒前
5秒前
5秒前
迟一风完成签到 ,获得积分10
5秒前
5秒前
李冰洋发布了新的文献求助10
5秒前
CIOOICO1发布了新的文献求助10
6秒前
6秒前
NexusExplorer应助zhangjing采纳,获得10
6秒前
7秒前
威武问枫完成签到,获得积分20
7秒前
Ava应助优秀的枕头采纳,获得10
7秒前
不灭发布了新的文献求助10
8秒前
李爱国应助天天采纳,获得100
8秒前
Ava应助天天采纳,获得10
8秒前
danna应助天天采纳,获得10
8秒前
彭于晏应助天天采纳,获得10
9秒前
852应助天天采纳,获得10
9秒前
风趣尔琴发布了新的文献求助30
9秒前
大模型应助敏哇哇哇采纳,获得10
9秒前
9秒前
星辰大海应助天天采纳,获得10
9秒前
无花果应助天天采纳,获得10
9秒前
9秒前
x跳完成签到,获得积分10
9秒前
10秒前
diupapa发布了新的文献求助10
10秒前
11秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3842155
求助须知:如何正确求助?哪些是违规求助? 3384295
关于积分的说明 10533896
捐赠科研通 3104642
什么是DOI,文献DOI怎么找? 1709781
邀请新用户注册赠送积分活动 823319
科研通“疑难数据库(出版商)”最低求助积分说明 774029