已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Deep CNN for COPD identification by Multi-View snapshot integration of 3D airway tree and lung field

慢性阻塞性肺病 气道 计算机科学 卷积神经网络 医学 人工智能 内科学 外科
作者
Yanan Wu,Ran Du,Jie Feng,Shouliang Qi,Haowen Pang,Shuyue Xia,Wei Qian
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:79: 104162-104162 被引量:20
标识
DOI:10.1016/j.bspc.2022.104162
摘要

Chronic obstructive pulmonary disease (COPD) is a complex and irreversible respiratory disease with potential morphological abnormalities of the airway and lung fields. To date, whether and how these abnormalities can be used to identify COPD is unknown. This study developed a deep convolutional neural network (CNN) integrating the airway tree and lung field morphologies to identify COPD. We represent 3D airway and lung fields through multi-view 2D snapshots and their integration via deep CNN, to estimate the possibility of COPD. We constructed two datasets named Dataset 1 including 380 participants (190 COPD and 190 healthy controls) for training and validation and Dataset 2 including 201 participants (101 COPD and 100 healthy controls) for testing. First, the 3D airway tree and lung field are automatically extracted from computed tomography (CT) images, and 2D snapshots in nine views are captured. Second, the proposed ResNet-26 is trained with each view of snapshots as input. Finally, majority voting of nine models is performed to identify COPD. The accuracy (ACC) of the single-view ResNet-26 model (ventral, dorsal, and isometric view of airway; front, rear, left, right, top, and bottom view of lung field) is 0.900, 0.873, 0.889, 0.868, 0.824, 0.876, 0.861, 0.839, and 0.884, respectively. For the multi-view ResNet-26 model of airway tree and lung field, the ACC is 0.913 and 0.895, respectively. For the model integrating all nine views, the ACC eventually reaches as high as 0.947. The deep CNN model identifies COPD through integrating morphology of the airway tree and lung field extracted from CT images. A different view of 2D snapshots represents various characteristics of the 3D airway tree and lung field. The integration of multiple views can improve the performance of COPD prediction. The CNN model provides a potential method of identifying COPD via CT scans.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
胡林发布了新的文献求助10
1秒前
Smile完成签到,获得积分10
2秒前
李健应助豆豆欢欢乐采纳,获得10
3秒前
徐徐发布了新的文献求助10
4秒前
5秒前
故城完成签到 ,获得积分10
9秒前
墨川完成签到,获得积分10
9秒前
sjxbjrndkd完成签到 ,获得积分10
10秒前
jimi完成签到,获得积分10
11秒前
13秒前
14秒前
远山笑你完成签到 ,获得积分10
14秒前
czh完成签到,获得积分10
16秒前
朝暮应助Bismarck采纳,获得10
16秒前
16秒前
18秒前
18秒前
陈chen完成签到,获得积分10
18秒前
Jemma发布了新的文献求助10
19秒前
SSS水鱼发布了新的文献求助10
21秒前
小小杜完成签到,获得积分10
22秒前
陈chen发布了新的文献求助10
24秒前
俭朴山柏发布了新的文献求助10
24秒前
24秒前
Lucas应助快来和姐妹玩采纳,获得10
24秒前
26秒前
搜集达人应助典雅的俊驰采纳,获得10
26秒前
量子星尘发布了新的文献求助10
26秒前
28秒前
称心元枫发布了新的文献求助10
29秒前
554802336给外向的小海豚的求助进行了留言
30秒前
ding应助ohh采纳,获得10
30秒前
香蕉觅云应助czh采纳,获得10
31秒前
爻解发布了新的文献求助10
32秒前
32秒前
斯文败类应助Gumiano采纳,获得10
33秒前
高大的傲雪给高大的傲雪的求助进行了留言
35秒前
犇骉发布了新的文献求助10
35秒前
快来和姐妹玩完成签到,获得积分10
36秒前
Jasper完成签到,获得积分10
37秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3976455
求助须知:如何正确求助?哪些是违规求助? 3520548
关于积分的说明 11203850
捐赠科研通 3257210
什么是DOI,文献DOI怎么找? 1798648
邀请新用户注册赠送积分活动 877835
科研通“疑难数据库(出版商)”最低求助积分说明 806539