Deep CNN for COPD identification by Multi-View snapshot integration of 3D airway tree and lung field

慢性阻塞性肺病 气道 计算机科学 卷积神经网络 医学 人工智能 内科学 外科
作者
Yanan Wu,Ran Du,Jie Feng,Shouliang Qi,Haowen Pang,Shuyue Xia,Wei Qian
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:79: 104162-104162 被引量:15
标识
DOI:10.1016/j.bspc.2022.104162
摘要

Chronic obstructive pulmonary disease (COPD) is a complex and irreversible respiratory disease with potential morphological abnormalities of the airway and lung fields. To date, whether and how these abnormalities can be used to identify COPD is unknown. This study developed a deep convolutional neural network (CNN) integrating the airway tree and lung field morphologies to identify COPD. We represent 3D airway and lung fields through multi-view 2D snapshots and their integration via deep CNN, to estimate the possibility of COPD. We constructed two datasets named Dataset 1 including 380 participants (190 COPD and 190 healthy controls) for training and validation and Dataset 2 including 201 participants (101 COPD and 100 healthy controls) for testing. First, the 3D airway tree and lung field are automatically extracted from computed tomography (CT) images, and 2D snapshots in nine views are captured. Second, the proposed ResNet-26 is trained with each view of snapshots as input. Finally, majority voting of nine models is performed to identify COPD. The accuracy (ACC) of the single-view ResNet-26 model (ventral, dorsal, and isometric view of airway; front, rear, left, right, top, and bottom view of lung field) is 0.900, 0.873, 0.889, 0.868, 0.824, 0.876, 0.861, 0.839, and 0.884, respectively. For the multi-view ResNet-26 model of airway tree and lung field, the ACC is 0.913 and 0.895, respectively. For the model integrating all nine views, the ACC eventually reaches as high as 0.947. The deep CNN model identifies COPD through integrating morphology of the airway tree and lung field extracted from CT images. A different view of 2D snapshots represents various characteristics of the 3D airway tree and lung field. The integration of multiple views can improve the performance of COPD prediction. The CNN model provides a potential method of identifying COPD via CT scans.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
柒毛完成签到 ,获得积分10
1秒前
搜集达人应助tatata采纳,获得20
1秒前
英俊的铭应助诚c采纳,获得10
1秒前
兔子完成签到 ,获得积分10
1秒前
1秒前
苹果巧蕊完成签到 ,获得积分10
1秒前
脑洞疼应助SDS采纳,获得10
1秒前
JamesPei应助Guo采纳,获得20
2秒前
马保国123完成签到,获得积分10
2秒前
2秒前
2秒前
迷你的冰巧完成签到,获得积分10
2秒前
万能图书馆应助学术蝗虫采纳,获得10
3秒前
慕青应助aurora采纳,获得30
3秒前
Jasper应助满意的盼夏采纳,获得10
3秒前
yitang完成签到,获得积分10
5秒前
www完成签到,获得积分10
5秒前
zhenzhen发布了新的文献求助10
5秒前
飞羽发布了新的文献求助10
5秒前
江沅完成签到 ,获得积分10
5秒前
6秒前
6秒前
Sean完成签到,获得积分10
6秒前
兜兜完成签到 ,获得积分10
6秒前
羊羊羊发布了新的文献求助10
7秒前
Rui完成签到,获得积分10
7秒前
bigger.b完成签到,获得积分10
7秒前
Nerissa完成签到,获得积分10
7秒前
Dr.Tang发布了新的文献求助10
7秒前
7秒前
田様应助笑点低蜜蜂采纳,获得10
7秒前
英俊的铭应助么系么系采纳,获得10
8秒前
ding应助寒冷的奇异果采纳,获得10
8秒前
lx发布了新的文献求助10
9秒前
舒适念真发布了新的文献求助10
9秒前
沉默哈密瓜完成签到 ,获得积分10
10秒前
身处人海完成签到,获得积分10
10秒前
Singularity应助暴躁的安柏采纳,获得10
10秒前
Singularity应助暴躁的安柏采纳,获得10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678