An Ameliorated Denoising Scheme Based on Deep Learning for Φ-OTDR System With 41-km Detection Range

降噪 卷积神经网络 人工智能 算法 光时域反射计 计算机科学 小波 数学 模式识别(心理学) 光纤 光纤传感器 电信 渐变折射率纤维
作者
Sichen Li,Kun Liu,Junfeng Jiang,Tianhua Xu,Zhenyang Ding,Zhenshi Sun,Yuelang Huang,Kang Xue,Xibo Jin,Tiegen Liu
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:22 (20): 19666-19674 被引量:21
标识
DOI:10.1109/jsen.2022.3202963
摘要

In recent years, denoising methods for improving the performance of the phase-sensitive optical time-domain reflectometry ( $\Phi $ -OTDR) system have been restricted by the deficiencies of time-consuming and limited denoising effect. In this work, a trained convolutional neural network (CNN)-based image denoising model is proposed to greatly eliminate the unwanted noises in the $\Phi $ -OTDR-based sensing system. First, the given Rayleigh backscattering traces are acquired and preprocessed through adjacent differentiation and two-dimensionalization. Second, the 2-D preprocessed data are converted into a noisy gray-scale image and sent into the CNN model for training and testing. Third, the CNN model outputs a corresponding denoised gray-scale image, which can be further analyzed by reconverting it into a series of denoised Rayleigh backscattering traces. Finally, a series of experiments are carried out to demonstrate the effectiveness of the proposed denoising scheme. Experimental results show that, in allusion to the vibration signal with different intensities along the 41-km optical sensing fiber, the trained CNN model achieves a signal-to-noise ratio (SNR) enhancement of about 20 dB. Compared with the conventional methods based on wavelet and empirical mode decomposition (EMD), the proposed denoising scheme demonstrates characteristics of robustness, well spatial resolution reservation, and high efficiency. It is believed that the trained CNN model has great potential to be deployed on the $\Phi $ -OTDR system for real-time denoising.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Rqbnicsp完成签到,获得积分10
刚刚
刚刚
smottom应助hohokuz采纳,获得10
刚刚
brd完成签到,获得积分10
1秒前
1秒前
Plucky完成签到,获得积分10
1秒前
2秒前
谁来救救我完成签到 ,获得积分10
2秒前
蓝天发布了新的文献求助10
2秒前
2秒前
NexusExplorer应助坚强的芸遥采纳,获得10
2秒前
hhhh完成签到,获得积分10
2秒前
迷失浪人完成签到,获得积分10
3秒前
斯文败类应助qqqq采纳,获得10
3秒前
材料打工人完成签到 ,获得积分10
3秒前
3秒前
gaoqg完成签到,获得积分10
3秒前
cc完成签到 ,获得积分10
3秒前
3秒前
秋子david完成签到,获得积分10
4秒前
xiangqing完成签到 ,获得积分10
4秒前
木子完成签到,获得积分10
5秒前
Twonej应助元谷雪采纳,获得30
5秒前
whb完成签到,获得积分10
5秒前
泡菜鱼oo完成签到,获得积分20
5秒前
时尚书白发布了新的文献求助10
5秒前
完美的冬瓜完成签到,获得积分10
5秒前
6秒前
6秒前
为医消得人憔悴完成签到,获得积分10
6秒前
欢呼的镜子完成签到,获得积分20
6秒前
量子星尘发布了新的文献求助10
6秒前
pandary完成签到,获得积分10
6秒前
kk完成签到,获得积分10
7秒前
hohokuz完成签到,获得积分10
7秒前
可爱的函函应助qingli采纳,获得10
7秒前
8秒前
Yu完成签到,获得积分20
8秒前
8秒前
木又权完成签到,获得积分10
9秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5698917
求助须知:如何正确求助?哪些是违规求助? 5127463
关于积分的说明 15223160
捐赠科研通 4853889
什么是DOI,文献DOI怎么找? 2604380
邀请新用户注册赠送积分活动 1555868
关于科研通互助平台的介绍 1514197