降噪
卷积神经网络
人工智能
算法
光时域反射计
计算机科学
小波
数学
模式识别(心理学)
光纤
光纤传感器
电信
渐变折射率纤维
作者
Sichen Li,Kun Liu,Junfeng Jiang,Tianhua Xu,Zhenyang Ding,Zhenshi Sun,Yuelang Huang,Kang Xue,Xibo Jin,Tiegen Liu
出处
期刊:IEEE Sensors Journal
[Institute of Electrical and Electronics Engineers]
日期:2022-08-31
卷期号:22 (20): 19666-19674
被引量:11
标识
DOI:10.1109/jsen.2022.3202963
摘要
In recent years, denoising methods for improving the performance of the phase-sensitive optical time-domain reflectometry ( $\Phi $ -OTDR) system have been restricted by the deficiencies of time-consuming and limited denoising effect. In this work, a trained convolutional neural network (CNN)-based image denoising model is proposed to greatly eliminate the unwanted noises in the $\Phi $ -OTDR-based sensing system. First, the given Rayleigh backscattering traces are acquired and preprocessed through adjacent differentiation and two-dimensionalization. Second, the 2-D preprocessed data are converted into a noisy gray-scale image and sent into the CNN model for training and testing. Third, the CNN model outputs a corresponding denoised gray-scale image, which can be further analyzed by reconverting it into a series of denoised Rayleigh backscattering traces. Finally, a series of experiments are carried out to demonstrate the effectiveness of the proposed denoising scheme. Experimental results show that, in allusion to the vibration signal with different intensities along the 41-km optical sensing fiber, the trained CNN model achieves a signal-to-noise ratio (SNR) enhancement of about 20 dB. Compared with the conventional methods based on wavelet and empirical mode decomposition (EMD), the proposed denoising scheme demonstrates characteristics of robustness, well spatial resolution reservation, and high efficiency. It is believed that the trained CNN model has great potential to be deployed on the $\Phi $ -OTDR system for real-time denoising.
科研通智能强力驱动
Strongly Powered by AbleSci AI