An Ameliorated Denoising Scheme Based on Deep Learning for Φ-OTDR System With 41-km Detection Range

降噪 卷积神经网络 人工智能 算法 光时域反射计 计算机科学 小波 数学 模式识别(心理学) 光纤 光纤传感器 电信 渐变折射率纤维
作者
Sichen Li,Kun Liu,Junfeng Jiang,Tianhua Xu,Zhenyang Ding,Zhenshi Sun,Yuelang Huang,Kang Xue,Xibo Jin,Tiegen Liu
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:22 (20): 19666-19674 被引量:11
标识
DOI:10.1109/jsen.2022.3202963
摘要

In recent years, denoising methods for improving the performance of the phase-sensitive optical time-domain reflectometry ( $\Phi $ -OTDR) system have been restricted by the deficiencies of time-consuming and limited denoising effect. In this work, a trained convolutional neural network (CNN)-based image denoising model is proposed to greatly eliminate the unwanted noises in the $\Phi $ -OTDR-based sensing system. First, the given Rayleigh backscattering traces are acquired and preprocessed through adjacent differentiation and two-dimensionalization. Second, the 2-D preprocessed data are converted into a noisy gray-scale image and sent into the CNN model for training and testing. Third, the CNN model outputs a corresponding denoised gray-scale image, which can be further analyzed by reconverting it into a series of denoised Rayleigh backscattering traces. Finally, a series of experiments are carried out to demonstrate the effectiveness of the proposed denoising scheme. Experimental results show that, in allusion to the vibration signal with different intensities along the 41-km optical sensing fiber, the trained CNN model achieves a signal-to-noise ratio (SNR) enhancement of about 20 dB. Compared with the conventional methods based on wavelet and empirical mode decomposition (EMD), the proposed denoising scheme demonstrates characteristics of robustness, well spatial resolution reservation, and high efficiency. It is believed that the trained CNN model has great potential to be deployed on the $\Phi $ -OTDR system for real-time denoising.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
奋斗飞丹完成签到 ,获得积分10
1秒前
Peipei完成签到,获得积分10
2秒前
白菜也挺贵完成签到,获得积分10
3秒前
时鹏飞完成签到,获得积分10
3秒前
蔡蔡蔡发布了新的文献求助10
4秒前
5秒前
jing发布了新的文献求助50
6秒前
6秒前
6秒前
lvhuiqi发布了新的文献求助10
7秒前
所所应助shanjianjie采纳,获得10
7秒前
xc完成签到,获得积分10
7秒前
9秒前
风趣雪一完成签到,获得积分10
9秒前
华仔应助乖宝采纳,获得10
9秒前
感动的雁枫完成签到,获得积分10
10秒前
dhsnh发布了新的文献求助10
10秒前
10秒前
丘比特应助直率雪曼采纳,获得10
12秒前
科研小菜完成签到,获得积分10
13秒前
13秒前
天天快乐应助耶布达采纳,获得10
13秒前
科研通AI6应助灵泽采纳,获得10
14秒前
lx完成签到,获得积分10
15秒前
留白留白发布了新的文献求助10
15秒前
我是老大应助非言墨语采纳,获得10
15秒前
典雅的丹寒完成签到,获得积分10
15秒前
16秒前
17秒前
汉堡包应助酆天菱采纳,获得10
17秒前
慕青应助lvhuiqi采纳,获得10
19秒前
zhao完成签到,获得积分10
19秒前
小陈完成签到,获得积分10
20秒前
20秒前
shanjianjie完成签到,获得积分10
21秒前
samantha发布了新的文献求助20
21秒前
科研通AI6应助火星上如花采纳,获得10
21秒前
科研通AI6应助火星上如花采纳,获得10
21秒前
一飞冲天的刺猬完成签到,获得积分10
21秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Reliability Monitoring Program 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5339665
求助须知:如何正确求助?哪些是违规求助? 4476410
关于积分的说明 13931491
捐赠科研通 4371956
什么是DOI,文献DOI怎么找? 2402218
邀请新用户注册赠送积分活动 1395083
关于科研通互助平台的介绍 1367077