An Ameliorated Denoising Scheme Based on Deep Learning for Φ-OTDR System With 41-km Detection Range

降噪 卷积神经网络 人工智能 算法 光时域反射计 计算机科学 小波 数学 模式识别(心理学) 光纤 光纤传感器 电信 渐变折射率纤维
作者
Sichen Li,Kun Liu,Junfeng Jiang,Tianhua Xu,Zhenyang Ding,Zhenshi Sun,Yuelang Huang,Kang Xue,Xibo Jin,Tiegen Liu
出处
期刊:IEEE Sensors Journal [IEEE Sensors Council]
卷期号:22 (20): 19666-19674 被引量:11
标识
DOI:10.1109/jsen.2022.3202963
摘要

In recent years, denoising methods for improving the performance of the phase-sensitive optical time-domain reflectometry ( $\Phi $ -OTDR) system have been restricted by the deficiencies of time-consuming and limited denoising effect. In this work, a trained convolutional neural network (CNN)-based image denoising model is proposed to greatly eliminate the unwanted noises in the $\Phi $ -OTDR-based sensing system. First, the given Rayleigh backscattering traces are acquired and preprocessed through adjacent differentiation and two-dimensionalization. Second, the 2-D preprocessed data are converted into a noisy gray-scale image and sent into the CNN model for training and testing. Third, the CNN model outputs a corresponding denoised gray-scale image, which can be further analyzed by reconverting it into a series of denoised Rayleigh backscattering traces. Finally, a series of experiments are carried out to demonstrate the effectiveness of the proposed denoising scheme. Experimental results show that, in allusion to the vibration signal with different intensities along the 41-km optical sensing fiber, the trained CNN model achieves a signal-to-noise ratio (SNR) enhancement of about 20 dB. Compared with the conventional methods based on wavelet and empirical mode decomposition (EMD), the proposed denoising scheme demonstrates characteristics of robustness, well spatial resolution reservation, and high efficiency. It is believed that the trained CNN model has great potential to be deployed on the $\Phi $ -OTDR system for real-time denoising.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
兴奋的台灯完成签到 ,获得积分10
1秒前
852应助无无无采纳,获得10
2秒前
bkagyin应助ll采纳,获得10
3秒前
大碗应助我要发sci采纳,获得10
3秒前
4秒前
浮游应助Dream采纳,获得10
4秒前
杜嘟嘟发布了新的文献求助10
4秒前
5秒前
清脆的代芹应助浮生采纳,获得10
5秒前
6秒前
科研通AI5应助haishuixing2采纳,获得10
6秒前
6秒前
夏夏霞完成签到,获得积分10
7秒前
8秒前
8秒前
在水一方应助阿毛采纳,获得10
8秒前
clara完成签到,获得积分20
8秒前
梁业松完成签到,获得积分20
8秒前
El发布了新的文献求助10
9秒前
9秒前
9秒前
10秒前
seven发布了新的文献求助10
10秒前
搜集达人应助777采纳,获得10
11秒前
Shiyz发布了新的文献求助10
11秒前
11秒前
量子星尘发布了新的文献求助30
12秒前
微笑以南完成签到,获得积分10
12秒前
12秒前
糊涂的飞荷完成签到,获得积分10
13秒前
lili发布了新的文献求助10
13秒前
14秒前
飘逸鸽子完成签到,获得积分10
14秒前
bo完成签到,获得积分10
14秒前
Ava应助Ting222采纳,获得30
14秒前
上官若男应助yy采纳,获得30
15秒前
15秒前
英姑应助慧hui采纳,获得30
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
Socialization In The Context Of The Family: Parent-Child Interaction 600
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4988890
求助须知:如何正确求助?哪些是违规求助? 4238321
关于积分的说明 13202223
捐赠科研通 4032221
什么是DOI,文献DOI怎么找? 2206012
邀请新用户注册赠送积分活动 1217341
关于科研通互助平台的介绍 1135527