An Ameliorated Denoising Scheme Based on Deep Learning for Φ-OTDR System With 41-km Detection Range

降噪 卷积神经网络 人工智能 算法 光时域反射计 计算机科学 小波 数学 模式识别(心理学) 光纤 光纤传感器 电信 渐变折射率纤维
作者
Sichen Li,Kun Liu,Junfeng Jiang,Tianhua Xu,Zhenyang Ding,Zhenshi Sun,Yuelang Huang,Kang Xue,Xibo Jin,Tiegen Liu
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:22 (20): 19666-19674 被引量:21
标识
DOI:10.1109/jsen.2022.3202963
摘要

In recent years, denoising methods for improving the performance of the phase-sensitive optical time-domain reflectometry ( $\Phi $ -OTDR) system have been restricted by the deficiencies of time-consuming and limited denoising effect. In this work, a trained convolutional neural network (CNN)-based image denoising model is proposed to greatly eliminate the unwanted noises in the $\Phi $ -OTDR-based sensing system. First, the given Rayleigh backscattering traces are acquired and preprocessed through adjacent differentiation and two-dimensionalization. Second, the 2-D preprocessed data are converted into a noisy gray-scale image and sent into the CNN model for training and testing. Third, the CNN model outputs a corresponding denoised gray-scale image, which can be further analyzed by reconverting it into a series of denoised Rayleigh backscattering traces. Finally, a series of experiments are carried out to demonstrate the effectiveness of the proposed denoising scheme. Experimental results show that, in allusion to the vibration signal with different intensities along the 41-km optical sensing fiber, the trained CNN model achieves a signal-to-noise ratio (SNR) enhancement of about 20 dB. Compared with the conventional methods based on wavelet and empirical mode decomposition (EMD), the proposed denoising scheme demonstrates characteristics of robustness, well spatial resolution reservation, and high efficiency. It is believed that the trained CNN model has great potential to be deployed on the $\Phi $ -OTDR system for real-time denoising.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
3秒前
Cheny发布了新的文献求助10
4秒前
eli完成签到,获得积分0
5秒前
桐桐应助Zox采纳,获得10
5秒前
贝博发布了新的文献求助10
6秒前
zhao完成签到,获得积分10
6秒前
彩色的乐驹完成签到 ,获得积分10
6秒前
rainbow完成签到,获得积分10
8秒前
ccm应助kevimfr采纳,获得10
8秒前
晚风完成签到,获得积分10
9秒前
10秒前
10秒前
白凝完成签到 ,获得积分10
12秒前
12秒前
lrsabrina发布了新的文献求助10
12秒前
13秒前
爱咋咋地发布了新的文献求助10
13秒前
心行完成签到,获得积分20
13秒前
minrui发布了新的文献求助10
14秒前
贺四洋发布了新的文献求助10
14秒前
碧蓝青梦发布了新的文献求助10
16秒前
科研通AI2S应助Cheny采纳,获得10
18秒前
一只西瓜茶完成签到,获得积分10
19秒前
19秒前
20秒前
共享精神应助kevimfr采纳,获得10
21秒前
22秒前
务实豪完成签到,获得积分20
24秒前
在水一方应助碧蓝青梦采纳,获得10
24秒前
lrsabrina完成签到,获得积分20
25秒前
SciGPT应助心行采纳,获得10
25秒前
ChuangyangLi发布了新的文献求助10
26秒前
28秒前
乐乐应助Foalphaz采纳,获得10
29秒前
29秒前
Artist完成签到 ,获得积分10
30秒前
zh_li完成签到,获得积分10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5565868
求助须知:如何正确求助?哪些是违规求助? 4650808
关于积分的说明 14693385
捐赠科研通 4592912
什么是DOI,文献DOI怎么找? 2519798
邀请新用户注册赠送积分活动 1492175
关于科研通互助平台的介绍 1463329