已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A Review of Progress and Applications in Wood Quality Modelling

质量(理念) 过程(计算) 经验模型 计算机科学 航程(航空) 相关性(法律) 比例(比率) 森林经营 预测建模 实证研究 树(集合论) 财产(哲学) 环境科学 机器学习 工程类 数学 农林复合经营 地理 模拟 统计 数学分析 哲学 地图学 认识论 法学 政治学 操作系统 航空航天工程
作者
David M. Drew,Geoffrey M. Downes,Thomas Seifert,Annemarie Eckes-Shepard,Alexis Achim
出处
期刊:Current forestry reports [Springer Nature]
卷期号:8 (4): 317-332 被引量:15
标识
DOI:10.1007/s40725-022-00171-0
摘要

Producing wood of the right quality is an important part of forest management. In the same way that forest growth models are valuable decision support tools for producing desired yields, models that predict wood quality in standing trees should assist forest managers to make quality-influenced decisions. A challenge for wood quality (WQ) models is to predict the properties of potential products from standing trees, given multiple possible growing environments and silvicultural adjustments. While much research has been undertaken to model forest growth, much less work has focussed on producing wood quality models. As a result, many opportunities exist to expand our knowledge. There has been an increase in the availability and use of non-destructive methods for wood quality assessment in standing trees. In parallel, a range of new models have been proposed in the last two decades, predicting wood property variation, and as a result wood quality, using both fully empirical (statistical) and process-based (mechanistic) approaches. We review here models that predict wood quality in standing trees. Although other research is mentioned where applicable, the focus is on research done within the last 20 years. We propose a simple classification of WQ models, first into two broad groupings: fully empirical and process-based. Comprehensive, although not exhaustive, summaries of a wide range of published models in both categories are given. The question of scale is addressed with relevance to the range of possibilities which these different types of models present. We distinguish between empirical models which predict stand or tree-level wood quality and those which predict within-tree wood quality variability. In this latter group are branching models (variation up the stem) and models predicting pith-to-bark clear-wood wood property variability. In the case of process-based models, simulation of within-tree variability, and specifically, how that variability arose over time, is always necessary. We discuss how wood quality models are, or should increasingly be, part of decision support systems that aid forest managers and give some perspectives on ways to increase model impact for forest management for wood quality.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Rolling完成签到 ,获得积分10
1秒前
weirdog给weirdog的求助进行了留言
3秒前
科研女仆完成签到 ,获得积分10
4秒前
4秒前
河鲸完成签到 ,获得积分10
5秒前
神外王001完成签到 ,获得积分10
6秒前
爆米花应助柔弱河马采纳,获得10
6秒前
7秒前
紧张的书文完成签到 ,获得积分10
8秒前
郭文钦完成签到 ,获得积分10
8秒前
背后的又蓝完成签到,获得积分20
11秒前
加顿土豆完成签到,获得积分10
12秒前
凶狠的嚣发布了新的文献求助10
13秒前
刘兴完成签到,获得积分10
13秒前
甜甜正豪完成签到,获得积分10
16秒前
汉堡包应助lokiyyy采纳,获得10
16秒前
江枫渔火完成签到 ,获得积分10
17秒前
Drwang完成签到,获得积分10
17秒前
bond完成签到,获得积分20
17秒前
牙粽子完成签到,获得积分10
17秒前
个性凡儿完成签到,获得积分10
18秒前
19秒前
19秒前
SciGPT应助TTRRCEB采纳,获得10
21秒前
23秒前
AU完成签到 ,获得积分10
23秒前
牙粽子发布了新的文献求助10
23秒前
xxxksk完成签到 ,获得积分0
26秒前
包容的珠发布了新的文献求助10
28秒前
Nature发布了新的文献求助10
29秒前
比奇堡不想上班派大星完成签到 ,获得积分10
29秒前
张匀继完成签到 ,获得积分10
29秒前
Tian完成签到,获得积分10
29秒前
完美世界应助祁尒采纳,获得10
31秒前
31秒前
儒雅的雁山完成签到 ,获得积分10
36秒前
xuke完成签到 ,获得积分10
36秒前
丘比特应助bubu采纳,获得10
38秒前
CipherSage应助yiyi采纳,获得10
39秒前
yu发布了新的文献求助30
39秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5663937
求助须知:如何正确求助?哪些是违规求助? 4854696
关于积分的说明 15106497
捐赠科研通 4822285
什么是DOI,文献DOI怎么找? 2581341
邀请新用户注册赠送积分活动 1535521
关于科研通互助平台的介绍 1493759