A Review of Progress and Applications in Wood Quality Modelling

质量(理念) 过程(计算) 经验模型 计算机科学 航程(航空) 相关性(法律) 比例(比率) 森林经营 预测建模 实证研究 树(集合论) 财产(哲学) 环境科学 机器学习 工程类 数学 农林复合经营 地理 模拟 统计 政治学 地图学 法学 航空航天工程 哲学 数学分析 操作系统 认识论
作者
David M. Drew,Geoffrey M. Downes,Thomas Seifert,Annemarie Eckes-Shepard,Alexis Achim
出处
期刊:Current forestry reports [Springer Nature]
卷期号:8 (4): 317-332 被引量:12
标识
DOI:10.1007/s40725-022-00171-0
摘要

Producing wood of the right quality is an important part of forest management. In the same way that forest growth models are valuable decision support tools for producing desired yields, models that predict wood quality in standing trees should assist forest managers to make quality-influenced decisions. A challenge for wood quality (WQ) models is to predict the properties of potential products from standing trees, given multiple possible growing environments and silvicultural adjustments. While much research has been undertaken to model forest growth, much less work has focussed on producing wood quality models. As a result, many opportunities exist to expand our knowledge. There has been an increase in the availability and use of non-destructive methods for wood quality assessment in standing trees. In parallel, a range of new models have been proposed in the last two decades, predicting wood property variation, and as a result wood quality, using both fully empirical (statistical) and process-based (mechanistic) approaches. We review here models that predict wood quality in standing trees. Although other research is mentioned where applicable, the focus is on research done within the last 20 years. We propose a simple classification of WQ models, first into two broad groupings: fully empirical and process-based. Comprehensive, although not exhaustive, summaries of a wide range of published models in both categories are given. The question of scale is addressed with relevance to the range of possibilities which these different types of models present. We distinguish between empirical models which predict stand or tree-level wood quality and those which predict within-tree wood quality variability. In this latter group are branching models (variation up the stem) and models predicting pith-to-bark clear-wood wood property variability. In the case of process-based models, simulation of within-tree variability, and specifically, how that variability arose over time, is always necessary. We discuss how wood quality models are, or should increasingly be, part of decision support systems that aid forest managers and give some perspectives on ways to increase model impact for forest management for wood quality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
nena发布了新的文献求助10
1秒前
1秒前
天天发布了新的文献求助10
2秒前
3秒前
3秒前
眉姐姐的藕粉桂花糖糕完成签到 ,获得积分10
4秒前
科研通AI2S应助111采纳,获得10
4秒前
乐观沛白发布了新的文献求助10
4秒前
白小黑发布了新的文献求助10
4秒前
luohao完成签到,获得积分10
5秒前
复杂雁桃发布了新的文献求助10
5秒前
5秒前
lzzz完成签到,获得积分10
6秒前
华仔应助陶醉的蜜蜂采纳,获得10
6秒前
白天发布了新的文献求助10
7秒前
niche9964发布了新的文献求助10
7秒前
SciGPT应助天天采纳,获得10
8秒前
fifteen发布了新的文献求助10
8秒前
数学情缘发布了新的文献求助10
9秒前
zismooo完成签到,获得积分10
10秒前
10秒前
LkKidmo完成签到,获得积分10
10秒前
星河zp发布了新的文献求助10
10秒前
cgg发布了新的文献求助10
11秒前
程贝贝发布了新的文献求助10
11秒前
12秒前
12秒前
wanghq完成签到,获得积分10
12秒前
13秒前
白小黑完成签到,获得积分0
14秒前
Xu发布了新的文献求助10
14秒前
虚拟的饼干完成签到,获得积分10
14秒前
14秒前
数学情缘完成签到,获得积分10
15秒前
16秒前
16秒前
syy关闭了syy文献求助
17秒前
yanhuazi发布了新的文献求助10
17秒前
111发布了新的文献求助10
17秒前
李健应助星河zp采纳,获得10
18秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150244
求助须知:如何正确求助?哪些是违规求助? 2801374
关于积分的说明 7844178
捐赠科研通 2458888
什么是DOI,文献DOI怎么找? 1308710
科研通“疑难数据库(出版商)”最低求助积分说明 628562
版权声明 601721