Nomogram models for stratified prediction of axillary lymph node metastasis in breast cancer patients (cN0)

列线图 乳腺癌 医学 肿瘤科 淋巴结转移 内科学 腋窝 淋巴结 转移 癌症
作者
Xin Gao,Wenpei Luo,Ling‐Yun He,Lu Yang
出处
期刊:Frontiers in Endocrinology [Frontiers Media SA]
卷期号:13 被引量:17
标识
DOI:10.3389/fendo.2022.967062
摘要

To determine the predictors of axillary lymph node metastasis (ALNM), two nomogram models were constructed to accurately predict the status of axillary lymph nodes (ALNs), mainly high nodal tumour burden (HNTB, > 2 positive lymph nodes), low nodal tumour burden (LNTB, 1-2 positive lymph nodes) and negative ALNM (N0). Accordingly, more appropriate treatment strategies for breast cancer patients without clinical ALNM (cN0) could be selected.From 2010 to 2015, a total of 6314 patients with invasive breast cancer (cN0) were diagnosed in the Surveillance, Epidemiology, and End Results (SEER) database and randomly assigned to the training and internal validation groups at a ratio of 3:1. As the external validation group, data from 503 breast cancer patients (cN0) who underwent axillary lymph node dissection (ALND) at the Second Affiliated Hospital of Chongqing Medical University between January 2011 and December 2020 were collected. The predictive factors determined by univariate and multivariate logistic regression analyses were used to construct the nomograms. Receiver operating characteristic (ROC) curves and calibration plots were used to assess the prediction models' discrimination and calibration.Univariate analysis and multivariate logistic regression analyses showed that tumour size, primary site, molecular subtype and grade were independent predictors of both ALNM and HNTB. Moreover, histologic type and age were independent predictors of ALNM and HNTB, respectively. Integrating these independent predictors, two nomograms were successfully developed to accurately predict the status of ALN. For nomogram 1 (prediction of ALNM), the areas under the receiver operating characteristic (ROC) curve in the training, internal validation and external validation groups were 0.715, 0.688 and 0.876, respectively. For nomogram 2 (prediction of HNTB), the areas under the ROC curve in the training, internal validation and external validation groups were 0.842, 0.823 and 0.862. The above results showed a satisfactory performance.We established two nomogram models to predict the status of ALNs (N0, 1-2 positive ALNs or >2 positive ALNs) for breast cancer patients (cN0). They were well verified in further internal and external groups. The nomograms can help doctors make more accurate treatment plans, and avoid unnecessary surgical trauma.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
zhzhzh发布了新的文献求助10
2秒前
XDF发布了新的文献求助30
2秒前
干净秋寒发布了新的文献求助10
2秒前
Owen应助日富一日采纳,获得10
3秒前
马孔多暴雨完成签到,获得积分10
3秒前
3秒前
bb完成签到,获得积分10
4秒前
5秒前
凶狠的傲蕾完成签到,获得积分20
5秒前
量子星尘发布了新的文献求助10
6秒前
哈皮完成签到,获得积分10
6秒前
烟花应助泡泡采纳,获得10
6秒前
蔫清完成签到,获得积分10
6秒前
wwwwwwww完成签到,获得积分10
7秒前
ttt发布了新的文献求助10
7秒前
7秒前
慕青应助落寞的尔芙采纳,获得30
7秒前
8秒前
研友_ZrBNxZ发布了新的文献求助10
8秒前
房恩羽发布了新的文献求助10
8秒前
汉堡包应助Nam22采纳,获得10
8秒前
幸福烤鸡完成签到,获得积分10
8秒前
SciGPT应助sunchaoyue采纳,获得10
9秒前
华仔应助甜蜜凡波采纳,获得10
9秒前
9秒前
yyqx完成签到 ,获得积分10
9秒前
Lucas应助QIQI采纳,获得10
9秒前
9秒前
王二完成签到,获得积分10
9秒前
研友_rLmrgn发布了新的文献求助10
10秒前
10秒前
慢慢的地理人完成签到,获得积分10
11秒前
李爱国应助yyl采纳,获得10
11秒前
weihe完成签到,获得积分10
11秒前
完美世界应助香菜丸子采纳,获得10
11秒前
12秒前
12秒前
yanjiuhuzu完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5719256
求助须知:如何正确求助?哪些是违规求助? 5255673
关于积分的说明 15288302
捐赠科研通 4869143
什么是DOI,文献DOI怎么找? 2614653
邀请新用户注册赠送积分活动 1564667
关于科研通互助平台的介绍 1521894