Nomogram models for stratified prediction of axillary lymph node metastasis in breast cancer patients (cN0)

列线图 乳腺癌 医学 肿瘤科 淋巴结转移 内科学 腋窝 淋巴结 转移 癌症
作者
Xin Gao,Wenpei Luo,Ling‐Yun He,Lu Yang
出处
期刊:Frontiers in Endocrinology [Frontiers Media SA]
卷期号:13 被引量:17
标识
DOI:10.3389/fendo.2022.967062
摘要

To determine the predictors of axillary lymph node metastasis (ALNM), two nomogram models were constructed to accurately predict the status of axillary lymph nodes (ALNs), mainly high nodal tumour burden (HNTB, > 2 positive lymph nodes), low nodal tumour burden (LNTB, 1-2 positive lymph nodes) and negative ALNM (N0). Accordingly, more appropriate treatment strategies for breast cancer patients without clinical ALNM (cN0) could be selected.From 2010 to 2015, a total of 6314 patients with invasive breast cancer (cN0) were diagnosed in the Surveillance, Epidemiology, and End Results (SEER) database and randomly assigned to the training and internal validation groups at a ratio of 3:1. As the external validation group, data from 503 breast cancer patients (cN0) who underwent axillary lymph node dissection (ALND) at the Second Affiliated Hospital of Chongqing Medical University between January 2011 and December 2020 were collected. The predictive factors determined by univariate and multivariate logistic regression analyses were used to construct the nomograms. Receiver operating characteristic (ROC) curves and calibration plots were used to assess the prediction models' discrimination and calibration.Univariate analysis and multivariate logistic regression analyses showed that tumour size, primary site, molecular subtype and grade were independent predictors of both ALNM and HNTB. Moreover, histologic type and age were independent predictors of ALNM and HNTB, respectively. Integrating these independent predictors, two nomograms were successfully developed to accurately predict the status of ALN. For nomogram 1 (prediction of ALNM), the areas under the receiver operating characteristic (ROC) curve in the training, internal validation and external validation groups were 0.715, 0.688 and 0.876, respectively. For nomogram 2 (prediction of HNTB), the areas under the ROC curve in the training, internal validation and external validation groups were 0.842, 0.823 and 0.862. The above results showed a satisfactory performance.We established two nomogram models to predict the status of ALNs (N0, 1-2 positive ALNs or >2 positive ALNs) for breast cancer patients (cN0). They were well verified in further internal and external groups. The nomograms can help doctors make more accurate treatment plans, and avoid unnecessary surgical trauma.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
VAN发布了新的文献求助10
2秒前
徐小美完成签到,获得积分20
3秒前
传奇3应助lll采纳,获得30
3秒前
老仙翁完成签到,获得积分10
3秒前
lilyz615完成签到,获得积分10
5秒前
6秒前
ding应助听见采纳,获得10
8秒前
8秒前
9秒前
斯文败类应助kuny采纳,获得10
9秒前
77发布了新的文献求助10
10秒前
aniver完成签到 ,获得积分10
11秒前
12秒前
痕丶歆完成签到 ,获得积分10
13秒前
量子星尘发布了新的文献求助10
14秒前
JY完成签到,获得积分10
14秒前
酷波er应助77采纳,获得10
14秒前
开朗啤酒完成签到,获得积分10
15秒前
独特的缘分完成签到,获得积分10
16秒前
震动的听安完成签到,获得积分10
17秒前
调皮语雪完成签到 ,获得积分10
19秒前
大力向南完成签到,获得积分10
19秒前
所所应助xbw采纳,获得10
21秒前
21秒前
21秒前
量子星尘发布了新的文献求助10
22秒前
24秒前
Ooo完成签到 ,获得积分10
25秒前
Liangstar完成签到 ,获得积分10
25秒前
小蘑菇应助清脆南霜采纳,获得10
26秒前
小蘑菇应助QinQin采纳,获得10
27秒前
Lucas应助鲨鱼游泳教练采纳,获得10
27秒前
bunny发布了新的文献求助10
28秒前
薯愿完成签到,获得积分10
28秒前
28秒前
28秒前
Akim应助办公室的李棒槌采纳,获得10
28秒前
杨榆藤发布了新的文献求助10
29秒前
miosha完成签到,获得积分10
29秒前
脑洞疼应助Leon_Kim采纳,获得10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742197
求助须知:如何正确求助?哪些是违规求助? 5407018
关于积分的说明 15344388
捐赠科研通 4883635
什么是DOI,文献DOI怎么找? 2625185
邀请新用户注册赠送积分活动 1574043
关于科研通互助平台的介绍 1530978