普通小球藻
浮标
制浆造纸工业
海藻酸钠
响应面法
色谱法
化学
有孔小珠
化学工程
环境科学
材料科学
钠
植物
复合材料
工程类
藻类
有机化学
海洋工程
生物
作者
Haowen Zhang,Hao Wen,Hongwei Yin,Wei Qin,Xu Liu,Yue Wang,Ying Liu
标识
DOI:10.1016/j.scitotenv.2022.158418
摘要
In order to reduce the residue of buoy-beads and solve the problem of pollution caused by high flocculant consumption, SAMs1(sodium alginate microspheres) with sodium alginate were used as the raw material to harvest microalgae for the first time. In addition, during the manufacturing of SAMs, the re-frying oil was used as the dispersion system, which not only reduced the cost, but also provided new ideas for the treatment of re-frying oil. Response surface methodology was used to explore the influence of different factors and the interaction of variables, and the harvesting process was optimized using the multi-objective optimization. Based upon the calculation of XDLVO (extended Derjaguin-Laudau-Verwey-Overbeek) theory and the characterization of Fourier Transform Infrared Spectroscopy, the harvesting mechanism of buoy-bead flotation method was clarified. The results showed that the combination of SAMs and a small amount of aluminum sulfate could replace air flotation and traditional buoy-bead flotation with solid particles as buoy-beads to harvest C. vulgaris (Chlorella vulgaris). For the multi-objective optimization with harvesting efficiency as the priority, the predicted pH, the concentrations of aluminum sulfate and buoy-beads and the dilution factor had values of 8.25, 56.09 mg/L, 17.46 mL/L, and 2.15, respectively. In the validation experiment, the harvesting efficiency and the enrichment ratio of C. vulgaris could reach the values of 97.51 % and 1.97 %, respectively. For the validation experiment of reverse optimization with focusing on enrichment ratio, the harvesting efficiency and the enrichment ratio of C. vulgaris had the values of 93.78 % and 2.65 %, respectively. The essence of improving the harvesting mechanism was the combination of carboxyl and hydroxyl groups between C. vulgaris and SAMs and the adsorption of positive ions by specific proteins on the surface of C. vulgaris to reduce electrostatic repulsion.
科研通智能强力驱动
Strongly Powered by AbleSci AI