Developing an Online Data-Driven State of Health Estimation of Lithium-Ion Batteries Under Random Sensor Measurement Unavailability

不可用 计算机科学 估计员 插补(统计学) 缺少数据 人工神经网络 辍学(神经网络) 数据挖掘 人工智能 可靠性工程 机器学习 工程类 统计 数学
作者
Safieh Bamati,Hicham Chaoui
出处
期刊:IEEE Transactions on Transportation Electrification 卷期号:9 (1): 1128-1141 被引量:14
标识
DOI:10.1109/tte.2022.3199115
摘要

Data-driven approaches have demonstrated remarkable accuracy in battery's state of health (SOH) estimation; however, they are susceptible to data quality and quantity. Therefore, an accurate data-based battery health estimation method is highly desirable in an unreliable industry environment when sensors' random measurements unavailability is ubiquitous. Successful training under random data unavailability becomes a difficult task to undertake. Therefore, the main challenge is how an offline trained model can be reliable and accurate under random sensors' measurements unavailability. This article develops an accurate SOH estimation model based on nonlinear autoregressive with exogenous inputs recurrent neural network for lithium-ion batteries whose features' measurements are subjected to different random missing observations. To evoke the uncertainty of sensors' measurements in online health diagnostic, missing observation occurrence is addressed by randomly eliminating sample data and then evaluating the model on the available measurements. Therefore, it does not require any imputation strategy for missing values. The accuracy of the estimator model is guaranteed when extracted underlying features are fused by adding their exponential moving average as the health features. The experimental results on two different datasets, Oxford and Toyota, under different battery chemistry and working operations demonstrate that the mean absolute errors (MAEs) and RMSs are well bounded below 2.70% and 3.10% for different random data missing rates of 1%–30%. It is a promising prediction model for numerous industrial applications with a high probability of random data unavailability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
和修完成签到,获得积分10
1秒前
1秒前
董秋白发布了新的文献求助10
3秒前
4秒前
研友_VZG7GZ应助Sir.夏季风采纳,获得10
5秒前
SHANEE发布了新的文献求助10
5秒前
所所应助Sunny采纳,获得10
6秒前
胡茶茶完成签到 ,获得积分10
7秒前
小蘑菇应助mdmdd采纳,获得10
7秒前
8秒前
fjhsg25发布了新的文献求助10
8秒前
8秒前
小材不菜完成签到,获得积分20
10秒前
阿明完成签到,获得积分10
11秒前
11秒前
12秒前
woiscdc发布了新的文献求助10
12秒前
打打应助绿洲采纳,获得10
14秒前
16秒前
17秒前
Sir.夏季风发布了新的文献求助10
17秒前
希望天下0贩的0应助SHANEE采纳,获得10
18秒前
小材不菜发布了新的文献求助10
18秒前
研友_n0DWDn完成签到,获得积分10
18秒前
脑洞疼应助sudaxia100采纳,获得10
18秒前
20秒前
21秒前
李健的粉丝团团长应助122采纳,获得10
22秒前
mdmdd发布了新的文献求助10
24秒前
25秒前
26秒前
27秒前
bc夹心给bc夹心的求助进行了留言
28秒前
28秒前
28秒前
哇了哇完成签到 ,获得积分10
28秒前
28秒前
29秒前
30秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Les Mantodea de Guyane 1000
Very-high-order BVD Schemes Using β-variable THINC Method 950
Field Guide to Insects of South Africa 660
Product Class 33: N-Arylhydroxylamines 300
Machine Learning in Chemistry 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3387570
求助须知:如何正确求助?哪些是违规求助? 3000244
关于积分的说明 8790173
捐赠科研通 2686176
什么是DOI,文献DOI怎么找? 1471493
科研通“疑难数据库(出版商)”最低求助积分说明 680352
邀请新用户注册赠送积分活动 673072