Markov State Models and Molecular Dynamics Simulations Reveal the Conformational Transition of the Intrinsically Disordered Hypervariable Region of K-Ras4B to the Ordered Conformation

化学 分子动力学 过渡(遗传学) 生物物理学 生物 生物化学 计算化学 基因
作者
Hao Zhang,Duan Ni,Jigang Fan,Min-Yu Li,Jian Zhang,Hua Chen,Ruth Nussinov,Shaoyong Lu
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:62 (17): 4222-4231 被引量:22
标识
DOI:10.1021/acs.jcim.2c00591
摘要

K-Ras4B, the most frequently mutated Ras isoform in human tumors, plays a vital part in cell growth, differentiation, and survival. Its tail, the C-terminal hypervariable region (HVR), is involved in anchoring K-Ras4B at the cellular plasma membrane and in isoform-specific protein–protein interactions and signaling. In the inactive guanosine diphosphate-bound state, the intrinsically disordered HVR interacts with the catalytic domain at the effector-binding region, rendering K-Ras4B in its autoinhibited state. Activation releases the HVR from the catalytic domain, with its ensemble favoring an ordered α-helical structure. The large-scale conformational transition of the HVR from the intrinsically disordered to the ordered conformation remains poorly understood. Here, we deploy a computational scheme that integrates a transition path-generation algorithm, extensive molecular dynamics simulation, and Markov state model analysis to investigate the conformational landscape of the HVR transition pathway. Our findings reveal a stepwise pathway for the HVR transition and uncover several key conformational substates along the transition pathway. Importantly, key interactions between the HVR and the catalytic domain are unraveled, highlighting the pathogenesis of K-Ras4B mild mutations in several congenital developmental anomaly syndromes. Together, these findings provide a deeper understanding of the HVR transition mechanism and the regulation of K-Ras4B activity at an atomic level.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
鹿友菌完成签到,获得积分10
2秒前
皮克斯完成签到 ,获得积分10
2秒前
黑米粥发布了新的文献求助10
2秒前
iu完成签到,获得积分10
2秒前
脑洞疼应助KX采纳,获得10
2秒前
大模型应助艺玲采纳,获得10
3秒前
ZXD完成签到,获得积分10
3秒前
3秒前
丞诺完成签到,获得积分10
3秒前
Ricardo完成签到,获得积分10
4秒前
深情安青应助孔雀翎采纳,获得10
4秒前
5秒前
5秒前
端庄的萝完成签到,获得积分10
5秒前
平淡南霜完成签到,获得积分10
5秒前
李健的粉丝团团长应助ppbb采纳,获得10
5秒前
Mr_Hao发布了新的文献求助20
6秒前
fff发布了新的文献求助10
6秒前
6秒前
CC发布了新的文献求助10
7秒前
eee发布了新的文献求助20
7秒前
HEIKU应助xinxinqi采纳,获得10
8秒前
keroro完成签到,获得积分10
8秒前
研友_VZG7GZ应助宋嬴一采纳,获得10
8秒前
祯果粒完成签到,获得积分10
8秒前
8秒前
王大炮完成签到 ,获得积分10
8秒前
不厌完成签到,获得积分10
9秒前
feifei关注了科研通微信公众号
9秒前
10秒前
香菜完成签到,获得积分20
10秒前
鲸是海蓝色完成签到 ,获得积分10
10秒前
英姑应助xhy采纳,获得10
10秒前
10秒前
10秒前
11秒前
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672