Markov State Models and Molecular Dynamics Simulations Reveal the Conformational Transition of the Intrinsically Disordered Hypervariable Region of K-Ras4B to the Ordered Conformation

化学 分子动力学 过渡(遗传学) 生物物理学 生物 生物化学 计算化学 基因
作者
Hao Zhang,Duan Ni,Jigang Fan,Min-Yu Li,Jian Zhang,Hua Chen,Ruth Nussinov,Shaoyong Lu
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:62 (17): 4222-4231 被引量:28
标识
DOI:10.1021/acs.jcim.2c00591
摘要

K-Ras4B, the most frequently mutated Ras isoform in human tumors, plays a vital part in cell growth, differentiation, and survival. Its tail, the C-terminal hypervariable region (HVR), is involved in anchoring K-Ras4B at the cellular plasma membrane and in isoform-specific protein–protein interactions and signaling. In the inactive guanosine diphosphate-bound state, the intrinsically disordered HVR interacts with the catalytic domain at the effector-binding region, rendering K-Ras4B in its autoinhibited state. Activation releases the HVR from the catalytic domain, with its ensemble favoring an ordered α-helical structure. The large-scale conformational transition of the HVR from the intrinsically disordered to the ordered conformation remains poorly understood. Here, we deploy a computational scheme that integrates a transition path-generation algorithm, extensive molecular dynamics simulation, and Markov state model analysis to investigate the conformational landscape of the HVR transition pathway. Our findings reveal a stepwise pathway for the HVR transition and uncover several key conformational substates along the transition pathway. Importantly, key interactions between the HVR and the catalytic domain are unraveled, highlighting the pathogenesis of K-Ras4B mild mutations in several congenital developmental anomaly syndromes. Together, these findings provide a deeper understanding of the HVR transition mechanism and the regulation of K-Ras4B activity at an atomic level.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3AM完成签到,获得积分10
刚刚
量子星尘发布了新的文献求助10
1秒前
3秒前
3秒前
Owen应助嗨呀采纳,获得10
3秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
乖张发布了新的文献求助10
5秒前
Carlito完成签到,获得积分10
5秒前
momomi发布了新的文献求助10
6秒前
乃惜发布了新的文献求助10
6秒前
华仔应助Stella采纳,获得10
7秒前
无花果应助jm采纳,获得10
7秒前
7秒前
小孙发布了新的文献求助10
8秒前
YYY完成签到,获得积分20
8秒前
科研通AI6.1应助柳易槐采纳,获得10
12秒前
研友_VZG7GZ应助Levy采纳,获得10
12秒前
量子星尘发布了新的文献求助10
13秒前
xia123发布了新的文献求助10
13秒前
zxcdsw应助XCY采纳,获得10
15秒前
17秒前
levi完成签到,获得积分10
18秒前
CipherSage应助100w采纳,获得10
18秒前
18秒前
张慧杰完成签到,获得积分10
19秒前
19秒前
爆米花应助ZKcrane采纳,获得10
19秒前
19秒前
20秒前
20秒前
小孙完成签到,获得积分10
20秒前
21秒前
Orange应助假如可以重来采纳,获得10
22秒前
司空威发布了新的文献求助10
22秒前
23秒前
林三针完成签到,获得积分20
23秒前
24秒前
24秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Agyptische Geschichte der 21.30. Dynastie 2000
中国脑卒中防治报告 1000
Variants in Economic Theory 1000
Global Ingredients & Formulations Guide 2014, Hardcover 1000
Research for Social Workers 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5826287
求助须知:如何正确求助?哪些是违规求助? 6014575
关于积分的说明 15569073
捐赠科研通 4946592
什么是DOI,文献DOI怎么找? 2664891
邀请新用户注册赠送积分活动 1610666
关于科研通互助平台的介绍 1565636