生物传感器
色谱法
分子印迹聚合物
石墨烯
化学
纳米技术
分子印迹
材料科学
选择性
有机化学
催化作用
作者
Yixuan Li,Liuxiong Luo,Mengyan Nie,Andrew Davenport,Ying Li,Bing Li,Kwang‐Leong Choy
标识
DOI:10.1016/j.bios.2022.114638
摘要
Accurate and reliable analysis of creatinine is clinically important for the early detection and monitoring of patients with kidney disease. We report a novel graphene nanoplatelet (GNP)/polydopamine (PDA)-molecularly imprinted polymer (MIP) biosensor for the ultra-trace detection of creatinine in a range of body fluids. Dopamine hydrochloride (DA) monomers were polymerized using a simple one-pot method to form a thin PDA-MIP layer on the surface of GNP with high density of creatinine recognition sites. This novel surface-MIP strategy resulted in a record low limit-of-detection (LOD) of 2 × 10−2 pg/ml with a wide dynamic detection range between 1 × 10−1-1 × 109 pg/ml. The practical application of this GNP/PDA-MIP biosensor has been tested by measuring creatinine in human serum, urine, and peritoneal dialysis (PD) fluids. The average recovery rate was 93.7–109.2% with relative standard deviation (RSD) below 4.1% compared to measurements made using standard clinical laboratory methods. Our GNP/PDA-MIP biosensor holds high promise for further development as a rapid, accurate, point-of-care diagnostic platform for detecting and monitoring patients with kidney disease.
科研通智能强力驱动
Strongly Powered by AbleSci AI