生态化学计量学
陆地生态系统
矿化(土壤科学)
生态系统
环境化学
硝化作用
铵
磷
生物量(生态学)
生产力
硝酸盐
土壤呼吸
营养物
氮气
氮气循环
土壤水分
化学
动物科学
农学
生态学
生物
宏观经济学
有机化学
经济
作者
Yuan Sun,Cuiting Wang,Xinli Chen,Shirong Liu,Xingjie Lu,Han Y. H. Chen,Honghua Ruan
摘要
Carbon (C):nitrogen (N):phosphorus (P) stoichiometry in plants, soils, and microbial biomass influences productivity and nutrient cycling in terrestrial ecosystems. Anthropogenic inputs of P to ecosystems are increasing; however, our understanding of the impacts of P addition on terrestrial ecosystem C:N:P ratios remains elusive. By conducting a meta-analysis with 1413 paired observations from 121 publications, we showed that P addition significantly decreased plant, soil, and microbial biomass N:P and C:P ratios, but had negligible effects on C:N ratios. The reductions in N:P and C:P ratios became more evident as the P application rates and experimental duration increased. The P addition effects on terrestrial ecosystem C:N:P stoichiometry did not vary with ecosystem types or climates. Moreover, the responses of N:P and C:P ratios in soil and microbial biomass were associated with the responses of soil pH and fungi:bacteria ratios. Additionally, P additions increased net primary productivity, microbial biomass, soil respiration, N mineralization, and N nitrification, but decreased ammonium and nitrate contents. Decreases in plant N:P and C:P ratios were both negatively correlated to net primary productivity and soil respiration, but positively correlated to ammonium and nitrate contents; microbial biomass, soil respiration, ammonium contents, and nitrate contents all increased with declining soil N:P and C:P ratios. Our findings highlight that P additions could imbalance C:N:P stoichiometry and potentially impact the terrestrial ecosystem functions.
科研通智能强力驱动
Strongly Powered by AbleSci AI