Genetic Programming Hyper-heuristic with Gaussian Process-based Reference Point Adaption for Many-Objective Job Shop Scheduling

计算机科学 数学优化 帕累托原理 多目标优化 启发式 调度(生产过程) 水准点(测量) 作业车间调度 遗传程序设计 高斯分布 算法 数学 人工智能 地铁列车时刻表 操作系统 地理 物理 量子力学 大地测量学
作者
Atiya Masood,Gang Chen,Yi Mei,Harith Al-Sahaf,Mengjie Zhang
标识
DOI:10.1109/cec55065.2022.9870322
摘要

Job Shop Scheduling (JSS) is an important real-world problem. However, the problem is challenging because of many conflicting objectives and the complexity of production flows. Genetic programming-based hyper-heuristic (GP-HH) is a useful approach for automatically evolving effective dispatching rules for many-objective JSS. However, the evolved Pareto-front is highly irregular, seriously affecting the effectiveness of GP-HH. Although the reference points method is one of the most prominent and efficient methods for diversity maintenance in many-objective problems, it usually uses a uniform distribution of reference points which is only appropriate for a regular Pareto-front. In fact, some reference points may never be linked to any Pareto-optimal solutions, rendering them useless. These useless reference points can significantly impact the performance of any reference-point-based many-objective optimization algorithms such as NSGA-III. This paper proposes a new reference point adaption process that explicitly constructs the distribution model using Gaussian process to effectively reduce the number of useless reference points to a low level, enabling a close match between reference points and the distribution of Pareto-optimal solutions. We incorporate this mechanism into NSGA-III to build a new algorithm called MARP-NSGA-III which is compared experimentally to several popular many-objective algorithms. Experiment results on a large collection of many-objective benchmark JSS instances clearly show that MARP-NSGA-III can significantly improve the performance by using our Gaussian Process-based reference point adaptation mechanism.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
123123123完成签到,获得积分20
刚刚
1秒前
1秒前
脑洞疼应助可乐加冰采纳,获得10
2秒前
2秒前
3秒前
tom发布了新的文献求助10
3秒前
wanci应助威武的人杰采纳,获得50
3秒前
龙仔完成签到 ,获得积分10
3秒前
Nic发布了新的文献求助10
4秒前
5秒前
5秒前
大萌发布了新的文献求助10
5秒前
5秒前
Owen应助三水采纳,获得10
6秒前
酷波er应助杨旭采纳,获得10
6秒前
6秒前
NexusExplorer应助感动的白梅采纳,获得10
6秒前
西奥发布了新的文献求助10
6秒前
长剑玉珥完成签到,获得积分10
6秒前
mika910完成签到 ,获得积分10
6秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
7秒前
liao应助zwc采纳,获得10
8秒前
汉堡包应助无昵称采纳,获得10
8秒前
8秒前
sqcpk完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
8秒前
小菜一碟完成签到,获得积分10
8秒前
ori完成签到,获得积分10
9秒前
SibetHu发布了新的文献求助10
10秒前
CodeCraft应助小华采纳,获得10
10秒前
10秒前
10秒前
bkagyin应助豆儿嘚小豆儿采纳,获得10
10秒前
典雅夏之完成签到,获得积分10
10秒前
hy发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667927
求助须知:如何正确求助?哪些是违规求助? 4888141
关于积分的说明 15122164
捐赠科研通 4826686
什么是DOI,文献DOI怎么找? 2584281
邀请新用户注册赠送积分活动 1538179
关于科研通互助平台的介绍 1496440