Genetic Programming Hyper-heuristic with Gaussian Process-based Reference Point Adaption for Many-Objective Job Shop Scheduling

计算机科学 数学优化 帕累托原理 多目标优化 启发式 调度(生产过程) 水准点(测量) 作业车间调度 遗传程序设计 高斯分布 算法 数学 人工智能 地铁列车时刻表 物理 量子力学 操作系统 大地测量学 地理
作者
Atiya Masood,Gang Chen,Yi Mei,Harith Al-Sahaf,Mengjie Zhang
标识
DOI:10.1109/cec55065.2022.9870322
摘要

Job Shop Scheduling (JSS) is an important real-world problem. However, the problem is challenging because of many conflicting objectives and the complexity of production flows. Genetic programming-based hyper-heuristic (GP-HH) is a useful approach for automatically evolving effective dispatching rules for many-objective JSS. However, the evolved Pareto-front is highly irregular, seriously affecting the effectiveness of GP-HH. Although the reference points method is one of the most prominent and efficient methods for diversity maintenance in many-objective problems, it usually uses a uniform distribution of reference points which is only appropriate for a regular Pareto-front. In fact, some reference points may never be linked to any Pareto-optimal solutions, rendering them useless. These useless reference points can significantly impact the performance of any reference-point-based many-objective optimization algorithms such as NSGA-III. This paper proposes a new reference point adaption process that explicitly constructs the distribution model using Gaussian process to effectively reduce the number of useless reference points to a low level, enabling a close match between reference points and the distribution of Pareto-optimal solutions. We incorporate this mechanism into NSGA-III to build a new algorithm called MARP-NSGA-III which is compared experimentally to several popular many-objective algorithms. Experiment results on a large collection of many-objective benchmark JSS instances clearly show that MARP-NSGA-III can significantly improve the performance by using our Gaussian Process-based reference point adaptation mechanism.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小熊维尼摇摇车完成签到,获得积分10
1秒前
1秒前
开心人达发布了新的文献求助10
2秒前
蹦蹦月亮发布了新的文献求助10
2秒前
dxy发布了新的文献求助10
2秒前
丘比特应助kyyy采纳,获得10
2秒前
3秒前
量子星尘发布了新的文献求助30
3秒前
木之木完成签到,获得积分10
4秒前
lq完成签到,获得积分10
4秒前
活力乐萱发布了新的文献求助10
5秒前
长青发布了新的文献求助10
5秒前
皮凡发布了新的文献求助30
5秒前
ljl完成签到,获得积分10
5秒前
6秒前
魏喆发布了新的文献求助10
6秒前
6秒前
852应助3333采纳,获得10
7秒前
科目三应助尹兴亮采纳,获得10
7秒前
Zayro完成签到,获得积分10
8秒前
棋士发布了新的文献求助21
8秒前
李朝霞完成签到,获得积分10
9秒前
cathy-w完成签到,获得积分0
9秒前
zzz发布了新的文献求助10
9秒前
李靖完成签到 ,获得积分10
9秒前
JiaoJiao发布了新的文献求助10
10秒前
10秒前
kyyy完成签到,获得积分10
10秒前
爱上学的小金完成签到 ,获得积分10
10秒前
11秒前
meimei完成签到,获得积分10
11秒前
11秒前
稳重听双完成签到,获得积分10
11秒前
12秒前
123完成签到,获得积分10
13秒前
13秒前
13秒前
悦耳溪流完成签到,获得积分10
14秒前
00发布了新的文献求助10
14秒前
孔刚完成签到 ,获得积分10
14秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960404
求助须知:如何正确求助?哪些是违规求助? 3506557
关于积分的说明 11131183
捐赠科研通 3238768
什么是DOI,文献DOI怎么找? 1789884
邀请新用户注册赠送积分活动 871986
科研通“疑难数据库(出版商)”最低求助积分说明 803118