Genetic Programming Hyper-heuristic with Gaussian Process-based Reference Point Adaption for Many-Objective Job Shop Scheduling

计算机科学 数学优化 帕累托原理 多目标优化 启发式 调度(生产过程) 水准点(测量) 作业车间调度 遗传程序设计 高斯分布 算法 数学 人工智能 地铁列车时刻表 物理 量子力学 操作系统 大地测量学 地理
作者
Atiya Masood,Gang Chen,Yi Mei,Harith Al-Sahaf,Mengjie Zhang
标识
DOI:10.1109/cec55065.2022.9870322
摘要

Job Shop Scheduling (JSS) is an important real-world problem. However, the problem is challenging because of many conflicting objectives and the complexity of production flows. Genetic programming-based hyper-heuristic (GP-HH) is a useful approach for automatically evolving effective dispatching rules for many-objective JSS. However, the evolved Pareto-front is highly irregular, seriously affecting the effectiveness of GP-HH. Although the reference points method is one of the most prominent and efficient methods for diversity maintenance in many-objective problems, it usually uses a uniform distribution of reference points which is only appropriate for a regular Pareto-front. In fact, some reference points may never be linked to any Pareto-optimal solutions, rendering them useless. These useless reference points can significantly impact the performance of any reference-point-based many-objective optimization algorithms such as NSGA-III. This paper proposes a new reference point adaption process that explicitly constructs the distribution model using Gaussian process to effectively reduce the number of useless reference points to a low level, enabling a close match between reference points and the distribution of Pareto-optimal solutions. We incorporate this mechanism into NSGA-III to build a new algorithm called MARP-NSGA-III which is compared experimentally to several popular many-objective algorithms. Experiment results on a large collection of many-objective benchmark JSS instances clearly show that MARP-NSGA-III can significantly improve the performance by using our Gaussian Process-based reference point adaptation mechanism.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
烂漫驳发布了新的文献求助10
1秒前
三侠完成签到,获得积分10
1秒前
orixero应助迷人圣诞树很闲采纳,获得10
2秒前
2秒前
学渣向下发布了新的文献求助10
2秒前
3秒前
专注乐巧完成签到,获得积分20
3秒前
天天快乐应助闪闪的摩托采纳,获得10
3秒前
BreezyGallery发布了新的文献求助10
3秒前
sss完成签到,获得积分10
3秒前
壮观寄文完成签到 ,获得积分10
3秒前
zhangkaixin完成签到,获得积分10
3秒前
4秒前
1111完成签到,获得积分10
5秒前
5秒前
swsx1317发布了新的文献求助10
6秒前
camellia发布了新的文献求助10
6秒前
拼搏思卉发布了新的文献求助10
6秒前
captin发布了新的文献求助10
6秒前
lzzj完成签到,获得积分10
6秒前
yannis2020发布了新的文献求助10
6秒前
孤独秋白完成签到,获得积分10
6秒前
安详绿草发布了新的文献求助10
6秒前
喵喵完成签到 ,获得积分10
6秒前
楼寒天发布了新的文献求助10
7秒前
陈陌陌完成签到,获得积分10
7秒前
CipherSage应助科研通管家采纳,获得20
8秒前
丘比特应助标致小伙采纳,获得10
8秒前
咸鱼好翻身完成签到,获得积分10
8秒前
NexusExplorer应助科研通管家采纳,获得30
8秒前
北北完成签到 ,获得积分10
8秒前
8秒前
1221211应助科研通管家采纳,获得10
8秒前
8秒前
prosperp应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759