Genetic Programming Hyper-heuristic with Gaussian Process-based Reference Point Adaption for Many-Objective Job Shop Scheduling

计算机科学 数学优化 帕累托原理 多目标优化 启发式 调度(生产过程) 水准点(测量) 作业车间调度 遗传程序设计 高斯分布 算法 数学 人工智能 地铁列车时刻表 操作系统 地理 物理 量子力学 大地测量学
作者
Atiya Masood,Gang Chen,Yi Mei,Harith Al-Sahaf,Mengjie Zhang
标识
DOI:10.1109/cec55065.2022.9870322
摘要

Job Shop Scheduling (JSS) is an important real-world problem. However, the problem is challenging because of many conflicting objectives and the complexity of production flows. Genetic programming-based hyper-heuristic (GP-HH) is a useful approach for automatically evolving effective dispatching rules for many-objective JSS. However, the evolved Pareto-front is highly irregular, seriously affecting the effectiveness of GP-HH. Although the reference points method is one of the most prominent and efficient methods for diversity maintenance in many-objective problems, it usually uses a uniform distribution of reference points which is only appropriate for a regular Pareto-front. In fact, some reference points may never be linked to any Pareto-optimal solutions, rendering them useless. These useless reference points can significantly impact the performance of any reference-point-based many-objective optimization algorithms such as NSGA-III. This paper proposes a new reference point adaption process that explicitly constructs the distribution model using Gaussian process to effectively reduce the number of useless reference points to a low level, enabling a close match between reference points and the distribution of Pareto-optimal solutions. We incorporate this mechanism into NSGA-III to build a new algorithm called MARP-NSGA-III which is compared experimentally to several popular many-objective algorithms. Experiment results on a large collection of many-objective benchmark JSS instances clearly show that MARP-NSGA-III can significantly improve the performance by using our Gaussian Process-based reference point adaptation mechanism.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英姑应助哈哈哈哈采纳,获得10
刚刚
小马甲应助俊秀的念薇采纳,获得10
刚刚
子子子子瞻完成签到,获得积分10
刚刚
刚刚
asdfrfg发布了新的文献求助10
刚刚
刚刚
哈哈发布了新的文献求助10
刚刚
李李李er完成签到,获得积分10
1秒前
raemourn完成签到,获得积分10
1秒前
1秒前
1秒前
靓丽的沁发布了新的文献求助10
1秒前
2秒前
2秒前
能干耳机完成签到,获得积分10
2秒前
2秒前
TongXia完成签到,获得积分10
2秒前
2秒前
椰椰完成签到,获得积分10
2秒前
现代的听云完成签到,获得积分20
3秒前
3秒前
3秒前
阳光的小笼包完成签到,获得积分10
3秒前
3秒前
别绪叁仟发布了新的文献求助10
3秒前
标致的山水完成签到 ,获得积分10
4秒前
4秒前
李一一发布了新的文献求助10
4秒前
李李李er发布了新的文献求助10
4秒前
白开水发布了新的文献求助10
4秒前
淡然千山完成签到 ,获得积分10
5秒前
5秒前
在下小李发布了新的文献求助10
6秒前
6秒前
6秒前
6秒前
caoyy完成签到,获得积分10
6秒前
张志超发布了新的文献求助10
7秒前
7秒前
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5625290
求助须知:如何正确求助?哪些是违规求助? 4711149
关于积分的说明 14954048
捐赠科研通 4779211
什么是DOI,文献DOI怎么找? 2553684
邀请新用户注册赠送积分活动 1515632
关于科研通互助平台的介绍 1475827