SNIS: A Signal Noise Separation-Based Network for Post-Processed Image Forgery Detection

稳健性(进化) 计算机科学 人工智能 计算机视觉 噪音(视频) 图像处理 模式识别(心理学) 信号处理 特征提取 卷积(计算机科学) 图像(数学) 人工神经网络 数字信号处理 生物化学 基因 计算机硬件 化学
作者
Jiaxin Chen,Xin Liao,Wei Wang,Zhenxing Qian,Zheng Qin,Yaonan Wang
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:33 (2): 935-951 被引量:21
标识
DOI:10.1109/tcsvt.2022.3204753
摘要

Image forgery detection has aroused widespread research interest in both academia and industry because of its potential security threats. Existing forgery detection methods achieve excellent tampered regions localization performance when forged images have not undergone post-processing, which can be detected by observing changes in the statistical features of images. However, forged images may be carefully post-processed to conceal forgery boundaries in a particular scenario. It becomes tough challenging to these methods. In this paper, we perform an analogous analysis between image forgery detection and blind signal separation, and formulate the post-processed image forgery detection problem into a signal noise separation problem. We also propose a signal noise separation-based (SNIS) network to solve the problem of detecting post-processed image forgery. Specifically, we first adopt the signal noise separation module to separate tampered region from the complex background region with post-processing noise, which weakens or even eliminates the negative impact of post-processing on forgery detection. Then, the multi-scale feature learning module uses a parallel atrous convolution architecture to learn high-level global features from multiple perspectives. Besides, a feature fusion module is utilized to enhance the discriminability of tampered regions and real regions by strengthening the boundary information. Finally, the prediction module is designed to predict the tampered region and classify the type of tampering operation. Extensive experiments show that the proposed SNIS is not only effective for forgery detection on forged images without post-processing, but also promising in robustness against multiple post-processing attacks. Furthermore, SNIS is robust in detecting forged images from unknown sources.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
123完成签到 ,获得积分20
2秒前
鱼鱼完成签到,获得积分10
3秒前
hh完成签到,获得积分10
3秒前
写小人物的大作家完成签到,获得积分10
3秒前
5秒前
6秒前
烟花应助ccciii采纳,获得10
10秒前
张靖发布了新的文献求助10
10秒前
郭富县城发布了新的文献求助10
11秒前
yuze完成签到 ,获得积分10
12秒前
13秒前
dd完成签到,获得积分10
13秒前
Emma给浅夏的求助进行了留言
15秒前
爱吃无核瓜子完成签到,获得积分10
17秒前
Lucas应助给我点光环采纳,获得10
19秒前
20秒前
嘉心糖应助清颜采纳,获得20
21秒前
21秒前
22秒前
23秒前
www发布了新的文献求助10
24秒前
jsxxdr发布了新的文献求助10
25秒前
大豆完成签到 ,获得积分10
25秒前
郭富县城完成签到,获得积分10
26秒前
lingo完成签到 ,获得积分10
26秒前
木子完成签到,获得积分10
26秒前
BowenShi发布了新的文献求助10
27秒前
Daisy完成签到,获得积分10
28秒前
哭泣的映寒完成签到 ,获得积分10
28秒前
28秒前
31秒前
木子木子吱吱完成签到,获得积分10
33秒前
季生发布了新的文献求助10
33秒前
张靖完成签到,获得积分10
34秒前
bkagyin应助酷炫的芒果采纳,获得10
34秒前
36秒前
36秒前
CipherSage应助香蕉寒梅采纳,获得10
36秒前
FashionBoy应助科研通管家采纳,获得10
37秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
中国氢能技术发展路线图研究 500
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3168354
求助须知:如何正确求助?哪些是违规求助? 2819697
关于积分的说明 7927596
捐赠科研通 2479609
什么是DOI,文献DOI怎么找? 1321007
科研通“疑难数据库(出版商)”最低求助积分说明 632925
版权声明 602460