SNIS: A Signal Noise Separation-Based Network for Post-Processed Image Forgery Detection

稳健性(进化) 计算机科学 人工智能 计算机视觉 噪音(视频) 图像处理 模式识别(心理学) 信号处理 特征提取 卷积(计算机科学) 图像(数学) 人工神经网络 数字信号处理 生物化学 基因 计算机硬件 化学
作者
Jiaxin Chen,Xin Liao,Wei Wang,Zhenxing Qian,Zheng Qin,Yaonan Wang
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:33 (2): 935-951 被引量:33
标识
DOI:10.1109/tcsvt.2022.3204753
摘要

Image forgery detection has aroused widespread research interest in both academia and industry because of its potential security threats. Existing forgery detection methods achieve excellent tampered regions localization performance when forged images have not undergone post-processing, which can be detected by observing changes in the statistical features of images. However, forged images may be carefully post-processed to conceal forgery boundaries in a particular scenario. It becomes tough challenging to these methods. In this paper, we perform an analogous analysis between image forgery detection and blind signal separation, and formulate the post-processed image forgery detection problem into a signal noise separation problem. We also propose a signal noise separation-based (SNIS) network to solve the problem of detecting post-processed image forgery. Specifically, we first adopt the signal noise separation module to separate tampered region from the complex background region with post-processing noise, which weakens or even eliminates the negative impact of post-processing on forgery detection. Then, the multi-scale feature learning module uses a parallel atrous convolution architecture to learn high-level global features from multiple perspectives. Besides, a feature fusion module is utilized to enhance the discriminability of tampered regions and real regions by strengthening the boundary information. Finally, the prediction module is designed to predict the tampered region and classify the type of tampering operation. Extensive experiments show that the proposed SNIS is not only effective for forgery detection on forged images without post-processing, but also promising in robustness against multiple post-processing attacks. Furthermore, SNIS is robust in detecting forged images from unknown sources.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
尔舟行发布了新的文献求助10
刚刚
马小翠发布了新的文献求助10
1秒前
1秒前
斑马还没睡完成签到,获得积分10
1秒前
不安的元霜完成签到,获得积分10
1秒前
汉堡包应助QW111采纳,获得10
1秒前
kks569完成签到,获得积分10
1秒前
呼呼完成签到,获得积分10
2秒前
2秒前
kangbo111发布了新的文献求助20
2秒前
2秒前
2秒前
善学以致用应助一年5篇采纳,获得10
2秒前
科研通AI6应助dht采纳,获得10
3秒前
3秒前
所所应助jinjinjin采纳,获得10
3秒前
高高完成签到,获得积分10
3秒前
科研通AI6应助雪雪啊采纳,获得10
3秒前
4秒前
4秒前
Orange应助wise111采纳,获得10
4秒前
hahaha发布了新的文献求助10
4秒前
6秒前
能干妙松完成签到,获得积分10
6秒前
晴天完成签到,获得积分10
6秒前
6秒前
lixm发布了新的文献求助10
7秒前
Dai完成签到,获得积分10
7秒前
8秒前
echosnooow发布了新的文献求助10
8秒前
文艺的幼菱完成签到,获得积分10
9秒前
bkagyin应助0717采纳,获得10
9秒前
可耐的靖完成签到,获得积分10
10秒前
10秒前
123完成签到,获得积分10
10秒前
核桃应助收拾收拾采纳,获得10
10秒前
Dai发布了新的文献求助10
10秒前
11秒前
呆呆发布了新的文献求助10
12秒前
斯文败类应助T拐拐采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Machine Learning for Polymer Informatics 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5410082
求助须知:如何正确求助?哪些是违规求助? 4527588
关于积分的说明 14111576
捐赠科研通 4441954
什么是DOI,文献DOI怎么找? 2437768
邀请新用户注册赠送积分活动 1429705
关于科研通互助平台的介绍 1407763