已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Augmented Sparse Representation for Incomplete Multiview Clustering

聚类分析 稀疏逼近 代表(政治) 计算机科学 人工智能 模式识别(心理学) 计算机视觉 数学 政治 政治学 法学
作者
Jie Chen,Shengxiang Yang,Xi Peng,Dezhong Peng,Zhu Wang
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (3): 4058-4071 被引量:13
标识
DOI:10.1109/tnnls.2022.3201699
摘要

Incomplete multiview data are collected from multiple sources or characterized by multiple modalities, where the features of some samples or some views may be missing. Incomplete multiview clustering (IMVC) aims to partition the data into different groups by taking full advantage of the complementary information from multiple incomplete views. Most existing methods based on matrix factorization or subspace learning attempt to recover the missing views or perform imputation of the missing features to improve clustering performance. However, this problem is intractable due to a lack of prior knowledge, e.g., label information or data distribution, especially when the missing views or features are completely damaged. In this article, we proposed an augmented sparse representation (ASR) method for IMVC. We first introduce a discriminative sparse representation learning (DSRL) model, which learns the sparse representations of multiple views as applied to measure the similarity of the existing features. The DSRL model explores complementary and consistent information by integrating the sparse regularization item and a consensus regularization item, respectively. Simultaneously, it learns a discriminative dictionary from the original samples. The sparsity constrained optimization problem in the DSRL model can be efficiently solved by the alternating direction method of multipliers (ADMM). Then, we present a similarity fusion scheme, namely, a sparsity augmented fusion of sparse representations, to obtain a sparsity augmented similarity matrix across different views for spectral clustering. Experimental results on several datasets demonstrate the effectiveness of the proposed ASR method for IMVC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123应助费老五采纳,获得10
1秒前
朴素剑心完成签到,获得积分10
1秒前
2秒前
5秒前
6秒前
朴素的无招完成签到 ,获得积分10
6秒前
6秒前
7秒前
keep完成签到 ,获得积分10
8秒前
11秒前
13秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
13秒前
CodeCraft应助科研通管家采纳,获得10
13秒前
13秒前
orixero应助科研通管家采纳,获得10
13秒前
王w完成签到 ,获得积分10
15秒前
20秒前
科研通AI5应助HYT采纳,获得10
22秒前
不喜发布了新的文献求助10
24秒前
28秒前
29秒前
星叶完成签到 ,获得积分10
31秒前
32秒前
brianzk1989完成签到,获得积分0
32秒前
32秒前
明理萃发布了新的文献求助10
33秒前
小蜻蜓完成签到,获得积分10
34秒前
38秒前
郑总完成签到 ,获得积分10
38秒前
敏感的百招完成签到,获得积分10
40秒前
41秒前
43秒前
44秒前
45秒前
46秒前
肥波完成签到,获得积分10
47秒前
Jasper应助拼命十三娘采纳,获得10
47秒前
147852发布了新的文献求助10
48秒前
shuqi完成签到 ,获得积分10
48秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968138
求助须知:如何正确求助?哪些是违规求助? 3513109
关于积分的说明 11166577
捐赠科研通 3248319
什么是DOI,文献DOI怎么找? 1794178
邀请新用户注册赠送积分活动 874903
科研通“疑难数据库(出版商)”最低求助积分说明 804629