Augmented Sparse Representation for Incomplete Multiview Clustering

聚类分析 稀疏逼近 代表(政治) 计算机科学 人工智能 模式识别(心理学) 计算机视觉 数学 政治学 政治 法学
作者
Jie Chen,Shengxiang Yang,Xi Peng,Dezhong Peng,Zhu Wang
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (3): 4058-4071 被引量:13
标识
DOI:10.1109/tnnls.2022.3201699
摘要

Incomplete multiview data are collected from multiple sources or characterized by multiple modalities, where the features of some samples or some views may be missing. Incomplete multiview clustering (IMVC) aims to partition the data into different groups by taking full advantage of the complementary information from multiple incomplete views. Most existing methods based on matrix factorization or subspace learning attempt to recover the missing views or perform imputation of the missing features to improve clustering performance. However, this problem is intractable due to a lack of prior knowledge, e.g., label information or data distribution, especially when the missing views or features are completely damaged. In this article, we proposed an augmented sparse representation (ASR) method for IMVC. We first introduce a discriminative sparse representation learning (DSRL) model, which learns the sparse representations of multiple views as applied to measure the similarity of the existing features. The DSRL model explores complementary and consistent information by integrating the sparse regularization item and a consensus regularization item, respectively. Simultaneously, it learns a discriminative dictionary from the original samples. The sparsity constrained optimization problem in the DSRL model can be efficiently solved by the alternating direction method of multipliers (ADMM). Then, we present a similarity fusion scheme, namely, a sparsity augmented fusion of sparse representations, to obtain a sparsity augmented similarity matrix across different views for spectral clustering. Experimental results on several datasets demonstrate the effectiveness of the proposed ASR method for IMVC.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
一YI完成签到,获得积分10
6秒前
汉堡包应助一个小胖子采纳,获得10
7秒前
xiangqing完成签到 ,获得积分10
8秒前
Miracle完成签到 ,获得积分10
9秒前
量子星尘发布了新的文献求助10
12秒前
15秒前
量子星尘发布了新的文献求助10
16秒前
Dr.Tang完成签到 ,获得积分10
16秒前
闻屿完成签到,获得积分10
17秒前
lcarus完成签到 ,获得积分10
20秒前
风里等你完成签到,获得积分10
22秒前
赧赧完成签到 ,获得积分10
23秒前
科研通AI6应助科研通管家采纳,获得10
24秒前
科研通AI2S应助科研通管家采纳,获得10
24秒前
lcarus关注了科研通微信公众号
24秒前
科研通AI6应助科研通管家采纳,获得10
24秒前
Adc应助科研通管家采纳,获得10
24秒前
stiger应助科研通管家采纳,获得10
24秒前
科研通AI6应助科研通管家采纳,获得10
25秒前
科研通AI6应助科研通管家采纳,获得10
25秒前
25秒前
25秒前
25秒前
科研通AI6应助科研通管家采纳,获得10
25秒前
25秒前
看文献完成签到,获得积分10
25秒前
25秒前
呆萌芙蓉完成签到 ,获得积分10
26秒前
量子星尘发布了新的文献求助10
28秒前
淮安石河子完成签到 ,获得积分10
28秒前
量子星尘发布了新的文献求助10
28秒前
30秒前
娷静完成签到 ,获得积分10
33秒前
TGU的小马同学完成签到 ,获得积分10
33秒前
33秒前
老和山完成签到,获得积分10
35秒前
kusicfack完成签到,获得积分10
36秒前
37秒前
银河里完成签到 ,获得积分10
38秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5715569
求助须知:如何正确求助?哪些是违规求助? 5235391
关于积分的说明 15274551
捐赠科研通 4866344
什么是DOI,文献DOI怎么找? 2612925
邀请新用户注册赠送积分活动 1563075
关于科研通互助平台的介绍 1520527