营养物
土壤水分
环境科学
土壤肥力
微生物种群生物学
环境化学
农学
磷
生态学
土壤科学
化学
生物
细菌
遗传学
有机化学
作者
Laurent K. Kidinda,Sebastian Doetterl,Karsten Kalbitz,Benjamin Bukombe,Doreen Babin,Basile B. Mujinya,Cordula Vogel
标识
DOI:10.1016/j.apsoil.2022.104653
摘要
Land-use conversion can profoundly modify geochemical and microbial properties that drive organic carbon (C) dynamics in tropical soils. However, it is unclear how microbes adjust nutrient acquisition strategies to changing geochemical properties across deeply weathered soils developed from geochemically contrasting parent material. Here we show that along a geochemical gradient in forest and cropland, a proxy variable, the chemical index of alteration (CIA), is sufficiently sensitive to reflect geochemical controls on microbial nutrient acquisition in tropical soils. We found that the CIA negatively correlates with rock-derived nutrient concentrations and pH, but positively with clay content, iron oxides, as well as total iron, aluminum, and manganese concentrations. Thus, using the CIA, which integrates effects of soil fertility and C stabilization by minerals, reduced the complexity of relating microbial nutrient acquisition to geochemical soil properties. Effects of the CIA on microbial C and phosphorus (P) acquisition were stronger in cropland than in forest soil. Microbial nutrient acquisition strategy shifted with increasing CIA from predominating C demand to P. Changes in soil properties at higher CIA (less rich in rock-derived nutrients) were favorable to fungi, which pursue a conservative nutrient allocation strategy to cope with acidic and nutrient-depleted soil conditions, reducing C loss through respiration. In low CIA soils (more rock-derived nutrients), bacteria-dominated communities increasingly invested in C acquisition at the expense of the community biomass, with subsequent greater C loss through respiration. We conclude that microbial communities adapt nutrient acquisition strategies to changing geochemical soil properties in a way that might affect C input versus C storage and release in tropical soils. Here, high soil fertility may favor plants to build up more C in biomass, thus increasing C input, whereas, it may also favor the establishment of microbial communities whose nutrient acquisition and allocation strategies limit long-term soil C storage. • The chemical index of alteration is a reliable proxy reflecting changes in geochemical soil properties. • The effect of geochemical soil properties on microbial nutrient acquisition is stronger in cropland than in forest soils. • Fungal communities dominate at higher CIA and adopt a conservative nutrient allocation strategy to cope with acidic and nutrient-depleted soil conditions.
科研通智能强力驱动
Strongly Powered by AbleSci AI