The Nucleotide Transformer: Building and Evaluating Robust Foundation Models for Human Genomics

基因组学 计算生物学 计算机科学 变压器 基因组 生物 基因 遗传学 工程类 电气工程 电压
作者
Hugo Dalla-Torre,Liam Gonzalez,Javier Mendoza Revilla,Nicolás López Carranza,Adam Henryk Grywaczewski,Francesco Oteri,Christian Dallago,Evan Trop,Hassan Sirelkhatim,Guillaume Richard,Marcin J. Skwark,Karim Beguir,Marie Lopez,Thomas Pierrot
标识
DOI:10.1101/2023.01.11.523679
摘要

Abstract Closing the gap between measurable genetic information and observable traits is a longstand-ing challenge in genomics. Yet, the prediction of molecular phenotypes from DNA sequences alone remains limited and inaccurate, often driven by the scarcity of annotated data and the inability to transfer learnings between prediction tasks. Here, we present an extensive study of foundation models pre-trained on DNA sequences, named the Nucleotide Transformer, rang-ing from 50M up to 2.5B parameters and integrating information from 3,202 diverse human genomes, as well as 850 genomes selected across diverse phyla, including both model and non-model organisms. These transformer models yield transferable, context-specific representations of nucleotide sequences, which allow for accurate molecular phenotype prediction even in low-data settings. We show that the developed models can be fine-tuned at low cost and despite low available data regime to solve a variety of genomics applications. Despite no supervision, the transformer models learned to focus attention on key genomic elements, including those that regulate gene expression, such as enhancers. Lastly, we demonstrate that utilizing model rep-resentations can improve the prioritization of functional genetic variants. The training and ap-plication of foundational models in genomics explored in this study provide a widely applicable stepping stone to bridge the gap of accurate molecular phenotype prediction from DNA sequence. Code and weights available at: https://github.com/instadeepai/nucleotide-transformer in Jax and https://huggingface.co/InstaDeepAI in Pytorch. Example notebooks to apply these models to any downstream task are available on HuggingFace.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
今天开心吗完成签到 ,获得积分10
1秒前
1秒前
快乐的忆山完成签到,获得积分10
1秒前
1秒前
2秒前
wade发布了新的文献求助10
2秒前
一锅炖不下完成签到,获得积分10
2秒前
lililili完成签到,获得积分10
2秒前
大岩石完成签到,获得积分10
2秒前
jammszs发布了新的文献求助10
2秒前
www完成签到,获得积分10
3秒前
科研通AI6应助tong采纳,获得10
3秒前
H与K完成签到,获得积分10
3秒前
独自受罪完成签到 ,获得积分10
3秒前
无畏完成签到,获得积分10
3秒前
科研小裴完成签到,获得积分10
3秒前
Gina完成签到 ,获得积分10
4秒前
iceeer完成签到,获得积分10
4秒前
a553355完成签到,获得积分10
4秒前
安全平静完成签到,获得积分10
4秒前
xiaobai应助王泽采纳,获得10
5秒前
幽默的太阳完成签到 ,获得积分10
5秒前
ding应助喜悦的秋柔采纳,获得10
5秒前
5秒前
等等完成签到,获得积分10
5秒前
宋浩奇完成签到 ,获得积分10
5秒前
zxm完成签到,获得积分10
5秒前
轻松的孤丹完成签到,获得积分10
6秒前
科研小王完成签到,获得积分10
6秒前
7秒前
水滴完成签到,获得积分10
7秒前
Dreamer0422完成签到,获得积分10
7秒前
8秒前
wade完成签到,获得积分10
8秒前
1233完成签到 ,获得积分10
8秒前
等等发布了新的文献求助10
8秒前
APS完成签到,获得积分10
9秒前
七月完成签到 ,获得积分10
9秒前
桑桑完成签到,获得积分10
9秒前
JKL77完成签到,获得积分10
9秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5337004
求助须知:如何正确求助?哪些是违规求助? 4474294
关于积分的说明 13923554
捐赠科研通 4369116
什么是DOI,文献DOI怎么找? 2400580
邀请新用户注册赠送积分活动 1393641
关于科研通互助平台的介绍 1365542