亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

The Nucleotide Transformer: Building and Evaluating Robust Foundation Models for Human Genomics

基因组学 计算生物学 计算机科学 变压器 基因组 生物 基因 遗传学 工程类 电气工程 电压
作者
Hugo Dalla-Torre,Liam Gonzalez,Javier Mendoza Revilla,Nicolás López Carranza,Adam Henryk Grywaczewski,Francesco Oteri,Christian Dallago,Evan Trop,Hassan Sirelkhatim,Guillaume Richard,Marcin J. Skwark,Karim Beguir,Marie Lopez,Thomas Pierrot
标识
DOI:10.1101/2023.01.11.523679
摘要

Abstract Closing the gap between measurable genetic information and observable traits is a longstand-ing challenge in genomics. Yet, the prediction of molecular phenotypes from DNA sequences alone remains limited and inaccurate, often driven by the scarcity of annotated data and the inability to transfer learnings between prediction tasks. Here, we present an extensive study of foundation models pre-trained on DNA sequences, named the Nucleotide Transformer, rang-ing from 50M up to 2.5B parameters and integrating information from 3,202 diverse human genomes, as well as 850 genomes selected across diverse phyla, including both model and non-model organisms. These transformer models yield transferable, context-specific representations of nucleotide sequences, which allow for accurate molecular phenotype prediction even in low-data settings. We show that the developed models can be fine-tuned at low cost and despite low available data regime to solve a variety of genomics applications. Despite no supervision, the transformer models learned to focus attention on key genomic elements, including those that regulate gene expression, such as enhancers. Lastly, we demonstrate that utilizing model rep-resentations can improve the prioritization of functional genetic variants. The training and ap-plication of foundational models in genomics explored in this study provide a widely applicable stepping stone to bridge the gap of accurate molecular phenotype prediction from DNA sequence. Code and weights available at: https://github.com/instadeepai/nucleotide-transformer in Jax and https://huggingface.co/InstaDeepAI in Pytorch. Example notebooks to apply these models to any downstream task are available on HuggingFace.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3977发布了新的文献求助10
5秒前
14秒前
开水发布了新的文献求助10
18秒前
手帕很忙完成签到,获得积分10
25秒前
烟花应助开水采纳,获得10
29秒前
Hello应助AAA汝南茶贩子采纳,获得10
50秒前
方沅完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
2分钟前
汉堡包发布了新的文献求助10
2分钟前
2分钟前
AixLeft完成签到 ,获得积分10
2分钟前
ggg发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
ggg完成签到,获得积分20
2分钟前
2分钟前
2分钟前
高贵毛巾发布了新的文献求助30
2分钟前
嗨害害发布了新的文献求助10
2分钟前
奈思完成签到 ,获得积分10
2分钟前
2分钟前
缓慢的烨伟完成签到,获得积分10
2分钟前
Orange应助高贵毛巾采纳,获得30
2分钟前
2分钟前
共享精神应助缓慢的烨伟采纳,获得10
3分钟前
3分钟前
田様应助汉堡包采纳,获得10
3分钟前
思源应助嗨害害采纳,获得10
3分钟前
Hello应助科研通管家采纳,获得10
3分钟前
AAA汝南茶贩子关注了科研通微信公众号
3分钟前
3分钟前
AAA汝南茶贩子关注了科研通微信公众号
3分钟前
AAA汝南茶贩子关注了科研通微信公众号
4分钟前
4分钟前
羞涩的傲菡完成签到,获得积分10
4分钟前
4分钟前
高分求助中
Comprehensive Toxicology Fourth Edition 2026 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Target genes for RNAi in pest control: A comprehensive overview 600
Master Curve-Auswertungen und Untersuchung des Größeneffekts für C(T)-Proben - aktuelle Erkenntnisse zur Untersuchung des Master Curve Konzepts für ferritisches Gusseisen mit Kugelgraphit bei dynamischer Beanspruchung (Projekt MCGUSS) 500
Design and Development of A CMOS Integrated Multimodal Sensor System with Carbon Nano-electrodes for Biosensor Applications 500
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5104679
求助须知:如何正确求助?哪些是违规求助? 4314798
关于积分的说明 13443697
捐赠科研通 4143164
什么是DOI,文献DOI怎么找? 2270155
邀请新用户注册赠送积分活动 1272704
关于科研通互助平台的介绍 1209622