The Nucleotide Transformer: Building and Evaluating Robust Foundation Models for Human Genomics

基因组学 计算生物学 计算机科学 变压器 基因组 生物 基因 遗传学 工程类 电气工程 电压
作者
Hugo Dalla-Torre,Liam Gonzalez,Javier Mendoza Revilla,Nicolás López Carranza,Adam Henryk Grywaczewski,Francesco Oteri,Christian Dallago,Evan Trop,Hassan Sirelkhatim,Guillaume Richard,Marcin J. Skwark,Karim Beguir,Marie Lopez,Thomas Pierrot
标识
DOI:10.1101/2023.01.11.523679
摘要

Abstract Closing the gap between measurable genetic information and observable traits is a longstand-ing challenge in genomics. Yet, the prediction of molecular phenotypes from DNA sequences alone remains limited and inaccurate, often driven by the scarcity of annotated data and the inability to transfer learnings between prediction tasks. Here, we present an extensive study of foundation models pre-trained on DNA sequences, named the Nucleotide Transformer, rang-ing from 50M up to 2.5B parameters and integrating information from 3,202 diverse human genomes, as well as 850 genomes selected across diverse phyla, including both model and non-model organisms. These transformer models yield transferable, context-specific representations of nucleotide sequences, which allow for accurate molecular phenotype prediction even in low-data settings. We show that the developed models can be fine-tuned at low cost and despite low available data regime to solve a variety of genomics applications. Despite no supervision, the transformer models learned to focus attention on key genomic elements, including those that regulate gene expression, such as enhancers. Lastly, we demonstrate that utilizing model rep-resentations can improve the prioritization of functional genetic variants. The training and ap-plication of foundational models in genomics explored in this study provide a widely applicable stepping stone to bridge the gap of accurate molecular phenotype prediction from DNA sequence. Code and weights available at: https://github.com/instadeepai/nucleotide-transformer in Jax and https://huggingface.co/InstaDeepAI in Pytorch. Example notebooks to apply these models to any downstream task are available on HuggingFace.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
不羁之魂完成签到,获得积分20
1秒前
我还想有很多头发完成签到,获得积分10
1秒前
CipherSage应助ambernameswu采纳,获得10
1秒前
1秒前
cht完成签到 ,获得积分10
2秒前
fff完成签到 ,获得积分10
2秒前
舒琪完成签到,获得积分10
2秒前
小星星668发布了新的文献求助10
2秒前
2秒前
充电宝应助22222采纳,获得10
3秒前
茉莉公主发布了新的文献求助10
4秒前
orixero应助yyygc采纳,获得10
4秒前
rudjs发布了新的文献求助10
4秒前
清风_breeze完成签到,获得积分20
4秒前
奥黛丽发布了新的文献求助10
4秒前
Slush完成签到,获得积分10
5秒前
852应助MW采纳,获得10
5秒前
YH发布了新的文献求助10
6秒前
春野发布了新的文献求助10
6秒前
狂野世立发布了新的文献求助10
6秒前
6秒前
7秒前
泡泡发布了新的文献求助10
7秒前
polarisier发布了新的文献求助10
7秒前
7秒前
传奇3应助kk采纳,获得10
8秒前
8秒前
读二白完成签到,获得积分10
9秒前
彩色飞柏发布了新的文献求助10
10秒前
10秒前
10秒前
10秒前
niceweiwei完成签到 ,获得积分10
11秒前
12秒前
ambernameswu完成签到 ,获得积分20
12秒前
13秒前
13秒前
13秒前
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5261224
求助须知:如何正确求助?哪些是违规求助? 4422343
关于积分的说明 13765975
捐赠科研通 4296787
什么是DOI,文献DOI怎么找? 2357517
邀请新用户注册赠送积分活动 1353903
关于科研通互助平台的介绍 1315103