The Nucleotide Transformer: Building and Evaluating Robust Foundation Models for Human Genomics

基因组学 计算生物学 计算机科学 变压器 基因组 生物 基因 遗传学 工程类 电气工程 电压
作者
Hugo Dalla-Torre,Liam Gonzalez,Javier Mendoza Revilla,Nicolás López Carranza,Adam Henryk Grywaczewski,Francesco Oteri,Christian Dallago,Evan Trop,Hassan Sirelkhatim,Guillaume Richard,Marcin J. Skwark,Karim Beguir,Marie Lopez,Thomas Pierrot
标识
DOI:10.1101/2023.01.11.523679
摘要

Abstract Closing the gap between measurable genetic information and observable traits is a longstand-ing challenge in genomics. Yet, the prediction of molecular phenotypes from DNA sequences alone remains limited and inaccurate, often driven by the scarcity of annotated data and the inability to transfer learnings between prediction tasks. Here, we present an extensive study of foundation models pre-trained on DNA sequences, named the Nucleotide Transformer, rang-ing from 50M up to 2.5B parameters and integrating information from 3,202 diverse human genomes, as well as 850 genomes selected across diverse phyla, including both model and non-model organisms. These transformer models yield transferable, context-specific representations of nucleotide sequences, which allow for accurate molecular phenotype prediction even in low-data settings. We show that the developed models can be fine-tuned at low cost and despite low available data regime to solve a variety of genomics applications. Despite no supervision, the transformer models learned to focus attention on key genomic elements, including those that regulate gene expression, such as enhancers. Lastly, we demonstrate that utilizing model rep-resentations can improve the prioritization of functional genetic variants. The training and ap-plication of foundational models in genomics explored in this study provide a widely applicable stepping stone to bridge the gap of accurate molecular phenotype prediction from DNA sequence. Code and weights available at: https://github.com/instadeepai/nucleotide-transformer in Jax and https://huggingface.co/InstaDeepAI in Pytorch. Example notebooks to apply these models to any downstream task are available on HuggingFace.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
幽默滑板完成签到 ,获得积分10
3秒前
loren313完成签到,获得积分0
3秒前
张旭完成签到,获得积分10
6秒前
8秒前
快乐的小蜜蜂完成签到,获得积分10
9秒前
侯笑笑发布了新的文献求助10
12秒前
pengyh8完成签到 ,获得积分10
13秒前
静待花开完成签到 ,获得积分10
16秒前
风之旅完成签到,获得积分10
16秒前
byron完成签到 ,获得积分10
17秒前
浮游应助侯笑笑采纳,获得30
24秒前
Una完成签到,获得积分10
30秒前
liaomr完成签到 ,获得积分10
39秒前
wlscj给Tina的求助进行了留言
44秒前
韧迹完成签到 ,获得积分10
50秒前
Ao_Jiang完成签到,获得积分10
50秒前
alex12259完成签到 ,获得积分10
51秒前
稳重乌冬面完成签到 ,获得积分10
51秒前
kelien1205完成签到 ,获得积分10
57秒前
湖以完成签到 ,获得积分10
1分钟前
矮小的凡阳完成签到 ,获得积分10
1分钟前
1分钟前
wlscj应助科研通管家采纳,获得20
1分钟前
LPPQBB应助科研通管家采纳,获得30
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
胜胜糖完成签到 ,获得积分10
1分钟前
科研通AI2S应助qweszxcbm采纳,获得10
1分钟前
哈哈完成签到,获得积分10
1分钟前
科目三应助予秋采纳,获得10
1分钟前
dra7vu完成签到,获得积分10
1分钟前
dracovu完成签到,获得积分10
1分钟前
vothuong完成签到,获得积分10
1分钟前
1分钟前
十月天秤完成签到,获得积分10
2分钟前
周全完成签到 ,获得积分10
2分钟前
朴实的飞机完成签到 ,获得积分10
2分钟前
2分钟前
Ox1dant发布了新的文献求助20
2分钟前
脑洞疼应助baobeikk采纳,获得10
2分钟前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertebrate Palaeontology, 5th Edition 530
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5347421
求助须知:如何正确求助?哪些是违规求助? 4481719
关于积分的说明 13948050
捐赠科研通 4380004
什么是DOI,文献DOI怎么找? 2406699
邀请新用户注册赠送积分活动 1399256
关于科研通互助平台的介绍 1372383