The Nucleotide Transformer: Building and Evaluating Robust Foundation Models for Human Genomics

基因组学 计算生物学 计算机科学 变压器 基因组 生物 基因 遗传学 工程类 电气工程 电压
作者
Hugo Dalla-Torre,Liam Gonzalez,Javier Mendoza Revilla,Nicolás López Carranza,Adam Henryk Grywaczewski,Francesco Oteri,Christian Dallago,Evan Trop,Hassan Sirelkhatim,Guillaume Richard,Marcin J. Skwark,Karim Beguir,Marie Lopez,Thomas Pierrot
标识
DOI:10.1101/2023.01.11.523679
摘要

Abstract Closing the gap between measurable genetic information and observable traits is a longstand-ing challenge in genomics. Yet, the prediction of molecular phenotypes from DNA sequences alone remains limited and inaccurate, often driven by the scarcity of annotated data and the inability to transfer learnings between prediction tasks. Here, we present an extensive study of foundation models pre-trained on DNA sequences, named the Nucleotide Transformer, rang-ing from 50M up to 2.5B parameters and integrating information from 3,202 diverse human genomes, as well as 850 genomes selected across diverse phyla, including both model and non-model organisms. These transformer models yield transferable, context-specific representations of nucleotide sequences, which allow for accurate molecular phenotype prediction even in low-data settings. We show that the developed models can be fine-tuned at low cost and despite low available data regime to solve a variety of genomics applications. Despite no supervision, the transformer models learned to focus attention on key genomic elements, including those that regulate gene expression, such as enhancers. Lastly, we demonstrate that utilizing model rep-resentations can improve the prioritization of functional genetic variants. The training and ap-plication of foundational models in genomics explored in this study provide a widely applicable stepping stone to bridge the gap of accurate molecular phenotype prediction from DNA sequence. Code and weights available at: https://github.com/instadeepai/nucleotide-transformer in Jax and https://huggingface.co/InstaDeepAI in Pytorch. Example notebooks to apply these models to any downstream task are available on HuggingFace.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助SilverPlane采纳,获得10
1秒前
1秒前
Eric完成签到,获得积分10
4秒前
威武从霜发布了新的文献求助10
4秒前
mvpzxx发布了新的文献求助30
5秒前
知了完成签到 ,获得积分10
5秒前
77发布了新的文献求助10
6秒前
冯藏花完成签到,获得积分10
6秒前
小白完成签到 ,获得积分10
7秒前
陈曦读研版完成签到 ,获得积分10
7秒前
8秒前
paws发布了新的文献求助10
8秒前
Akim应助无限绮南采纳,获得10
11秒前
红毛兔完成签到,获得积分10
11秒前
saily完成签到,获得积分10
13秒前
13秒前
量子星尘发布了新的文献求助10
13秒前
14秒前
14秒前
幽默身影发布了新的文献求助10
14秒前
乐乐发布了新的文献求助10
15秒前
16秒前
16秒前
16秒前
哈哈镜阿姐应助paws采纳,获得10
17秒前
laifeihong完成签到,获得积分10
17秒前
77完成签到,获得积分20
17秒前
科研小白发布了新的文献求助30
17秒前
18秒前
20秒前
20秒前
西米发布了新的文献求助10
20秒前
21秒前
坚果发布了新的文献求助10
21秒前
21秒前
何必在乎发布了新的文献求助10
22秒前
露桥闻笛发布了新的文献求助30
24秒前
cding发布了新的文献求助10
25秒前
25秒前
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642496
求助须知:如何正确求助?哪些是违规求助? 4758935
关于积分的说明 15017747
捐赠科研通 4801078
什么是DOI,文献DOI怎么找? 2566357
邀请新用户注册赠送积分活动 1524465
关于科研通互助平台的介绍 1483995