The Nucleotide Transformer: Building and Evaluating Robust Foundation Models for Human Genomics

基因组学 计算生物学 计算机科学 变压器 基因组 生物 基因 遗传学 工程类 电气工程 电压
作者
Hugo Dalla-Torre,Liam Gonzalez,Javier Mendoza Revilla,Nicolás López Carranza,Adam Henryk Grywaczewski,Francesco Oteri,Christian Dallago,Evan Trop,Hassan Sirelkhatim,Guillaume Richard,Marcin J. Skwark,Karim Beguir,Marie Lopez,Thomas Pierrot
标识
DOI:10.1101/2023.01.11.523679
摘要

Abstract Closing the gap between measurable genetic information and observable traits is a longstand-ing challenge in genomics. Yet, the prediction of molecular phenotypes from DNA sequences alone remains limited and inaccurate, often driven by the scarcity of annotated data and the inability to transfer learnings between prediction tasks. Here, we present an extensive study of foundation models pre-trained on DNA sequences, named the Nucleotide Transformer, rang-ing from 50M up to 2.5B parameters and integrating information from 3,202 diverse human genomes, as well as 850 genomes selected across diverse phyla, including both model and non-model organisms. These transformer models yield transferable, context-specific representations of nucleotide sequences, which allow for accurate molecular phenotype prediction even in low-data settings. We show that the developed models can be fine-tuned at low cost and despite low available data regime to solve a variety of genomics applications. Despite no supervision, the transformer models learned to focus attention on key genomic elements, including those that regulate gene expression, such as enhancers. Lastly, we demonstrate that utilizing model rep-resentations can improve the prioritization of functional genetic variants. The training and ap-plication of foundational models in genomics explored in this study provide a widely applicable stepping stone to bridge the gap of accurate molecular phenotype prediction from DNA sequence. Code and weights available at: https://github.com/instadeepai/nucleotide-transformer in Jax and https://huggingface.co/InstaDeepAI in Pytorch. Example notebooks to apply these models to any downstream task are available on HuggingFace.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
Ariellvv发布了新的文献求助30
3秒前
NexusExplorer应助水123采纳,获得10
3秒前
鳗鱼紊完成签到 ,获得积分10
4秒前
Lucy完成签到,获得积分10
4秒前
buno应助skr采纳,获得10
4秒前
深情安青应助独特访枫采纳,获得10
4秒前
liujunzhe应助jjf采纳,获得10
6秒前
6秒前
8秒前
Du_u20230228发布了新的文献求助50
9秒前
归尘应助kaka采纳,获得10
9秒前
10秒前
zjj发布了新的文献求助100
10秒前
王明磊完成签到 ,获得积分10
11秒前
枇杷膏完成签到,获得积分10
12秒前
hh完成签到 ,获得积分10
12秒前
若水完成签到,获得积分0
12秒前
烟花应助一个西藏采纳,获得30
13秒前
独特的凝云完成签到 ,获得积分10
13秒前
小手冰凉完成签到,获得积分10
14秒前
whx完成签到,获得积分10
15秒前
晶晶完成签到,获得积分10
15秒前
归尘应助han采纳,获得10
16秒前
大花卷完成签到,获得积分10
16秒前
小张完成签到,获得积分10
16秒前
17秒前
Gengen完成签到,获得积分10
17秒前
星星完成签到,获得积分10
17秒前
韩韩喜欢吃蛋糕完成签到,获得积分20
18秒前
ZDM6094完成签到 ,获得积分10
20秒前
20秒前
23秒前
水123发布了新的文献求助10
23秒前
24秒前
汶溢完成签到,获得积分10
24秒前
24秒前
星星发布了新的文献求助10
25秒前
科目三应助一一采纳,获得10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Peptide Synthesis_Methods and Protocols 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603909
求助须知:如何正确求助?哪些是违规求助? 4688768
关于积分的说明 14856065
捐赠科研通 4695384
什么是DOI,文献DOI怎么找? 2541023
邀请新用户注册赠送积分活动 1507167
关于科研通互助平台的介绍 1471832