The Nucleotide Transformer: Building and Evaluating Robust Foundation Models for Human Genomics

基因组学 计算生物学 计算机科学 变压器 基因组 生物 基因 遗传学 工程类 电气工程 电压
作者
Hugo Dalla-Torre,Liam Gonzalez,Javier Mendoza Revilla,Nicolás López Carranza,Adam Henryk Grywaczewski,Francesco Oteri,Christian Dallago,Evan Trop,Hassan Sirelkhatim,Guillaume Richard,Marcin J. Skwark,Karim Beguir,Marie Lopez,Thomas Pierrot
标识
DOI:10.1101/2023.01.11.523679
摘要

Abstract Closing the gap between measurable genetic information and observable traits is a longstand-ing challenge in genomics. Yet, the prediction of molecular phenotypes from DNA sequences alone remains limited and inaccurate, often driven by the scarcity of annotated data and the inability to transfer learnings between prediction tasks. Here, we present an extensive study of foundation models pre-trained on DNA sequences, named the Nucleotide Transformer, rang-ing from 50M up to 2.5B parameters and integrating information from 3,202 diverse human genomes, as well as 850 genomes selected across diverse phyla, including both model and non-model organisms. These transformer models yield transferable, context-specific representations of nucleotide sequences, which allow for accurate molecular phenotype prediction even in low-data settings. We show that the developed models can be fine-tuned at low cost and despite low available data regime to solve a variety of genomics applications. Despite no supervision, the transformer models learned to focus attention on key genomic elements, including those that regulate gene expression, such as enhancers. Lastly, we demonstrate that utilizing model rep-resentations can improve the prioritization of functional genetic variants. The training and ap-plication of foundational models in genomics explored in this study provide a widely applicable stepping stone to bridge the gap of accurate molecular phenotype prediction from DNA sequence. Code and weights available at: https://github.com/instadeepai/nucleotide-transformer in Jax and https://huggingface.co/InstaDeepAI in Pytorch. Example notebooks to apply these models to any downstream task are available on HuggingFace.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小巧问芙完成签到 ,获得积分10
1秒前
1秒前
ybheart完成签到,获得积分10
2秒前
honda完成签到,获得积分10
2秒前
3秒前
lsyt发布了新的文献求助30
4秒前
5秒前
JamesPei应助宁静致远采纳,获得10
6秒前
snail发布了新的文献求助10
8秒前
orixero应助科研进化中采纳,获得10
8秒前
8秒前
科研小白发布了新的文献求助10
9秒前
10秒前
情怀应助黄景瑜采纳,获得10
11秒前
初楠完成签到 ,获得积分10
11秒前
zzzzzaaw发布了新的文献求助10
11秒前
李健应助twb采纳,获得10
13秒前
lsyt完成签到,获得积分10
14秒前
和谐为上完成签到,获得积分10
16秒前
草莓啵啵兔完成签到 ,获得积分10
16秒前
16秒前
科研小白完成签到,获得积分20
16秒前
17秒前
17秒前
snail完成签到,获得积分10
19秒前
21秒前
九镑十五便士完成签到,获得积分10
21秒前
21秒前
21秒前
23秒前
脑洞疼应助丶氵一生里采纳,获得10
23秒前
twb发布了新的文献求助10
24秒前
25秒前
25秒前
一一发布了新的文献求助10
26秒前
27秒前
英俊的铭应助冷酷芷雪采纳,获得10
27秒前
Ava应助科研进化中采纳,获得10
28秒前
窗外落霞发布了新的文献求助10
29秒前
王自搏完成签到,获得积分10
29秒前
高分求助中
Effect of reactor temperature on FCC yield 1500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Uncertainty Quantification: Theory, Implementation, and Applications, Second Edition 800
The Healthy Socialist Life in Maoist China 600
The Vladimirov Diaries [by Peter Vladimirov] 600
Production Logging: Theoretical and Interpretive Elements 555
Mesopotamian Divination Texts: Conversing with the Gods 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3279648
求助须知:如何正确求助?哪些是违规求助? 2917886
关于积分的说明 8387756
捐赠科研通 2588810
什么是DOI,文献DOI怎么找? 1410359
科研通“疑难数据库(出版商)”最低求助积分说明 657669
邀请新用户注册赠送积分活动 638816