GC-Net: Global and Class Attention Blocks for Automated Glaucoma Classification

计算机科学 卷积神经网络 背景(考古学) 人工智能 块(置换群论) 特征提取 特征(语言学) 深度学习 班级(哲学) 卷积(计算机科学) 机器学习 模式识别(心理学) 人工神经网络 数据挖掘 古生物学 语言学 哲学 几何学 数学 生物
作者
Hang Tian,Shuai Lu,Yun Sun,Huiqi Li
标识
DOI:10.1109/iciea54703.2022.10005946
摘要

Glaucoma is an irreversible vision loss, which develops gradually without obvious symptoms. It is hard to detect in early stages and diagnostic procedure is a time-consuming work. Therefore, early screening and treatment are essential to protect vision and maintain quality of life. In previous work of glaucoma classification, convolutional neural network (CNN) has been used in lots of researches and got a good performance. However, the convolution operator only focuses on local information in feature extraction and context information will be lost to a large extent. Attention block pays more attention to global information, which has full coverage of the whole feature extraction. In this paper, a novel CNN model embedded with two attention blocks is proposed. Global attention block (GAB) has advantages on extracting global attention maps and focusing on context information for fundus images. We also put forward class attention block (CAB) to focus on the characteristics of each disease category and reduce the impact of data set imbalance. By combining the above modules and CNN backbone, our GC-Net is constructed for glaucoma classification task, which can be trained in an end-to-end manner. We verify our model through two public dataset experiments and both of them show that our global and classes attention network (GC-Net) produces the best performance compared with the baseline CNN models and other existing state-of-the-art deep learning models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助科研通管家采纳,获得10
刚刚
乐乐应助科研通管家采纳,获得10
刚刚
李爱国应助科研通管家采纳,获得10
刚刚
LL应助科研通管家采纳,获得10
刚刚
情怀应助科研通管家采纳,获得10
刚刚
香蕉觅云应助科研通管家采纳,获得10
刚刚
CodeCraft应助科研通管家采纳,获得30
刚刚
华仔应助科研通管家采纳,获得10
刚刚
耍酷鼠标完成签到 ,获得积分0
1秒前
1秒前
1秒前
1秒前
艾科研发布了新的文献求助10
2秒前
3秒前
搁浅完成签到,获得积分10
3秒前
慕青应助xinxin采纳,获得30
3秒前
hiiamwu完成签到 ,获得积分10
3秒前
科研通AI5应助沐沐采纳,获得10
3秒前
科研通AI2S应助xieyuanxing采纳,获得10
3秒前
今后应助高兴冬灵采纳,获得10
3秒前
zho发布了新的文献求助10
4秒前
kathy发布了新的文献求助10
5秒前
尊敬的半梅完成签到 ,获得积分10
6秒前
6秒前
戴丝发布了新的文献求助10
6秒前
弥谷发布了新的文献求助10
6秒前
6秒前
6秒前
酷波er应助有志青年采纳,获得10
7秒前
wo发布了新的文献求助30
7秒前
8秒前
Shirley发布了新的文献求助10
8秒前
科目三应助高大的未来采纳,获得10
9秒前
10秒前
Islay50ppm完成签到 ,获得积分10
11秒前
科研通AI5应助王雨辰采纳,获得10
11秒前
12秒前
小熊发布了新的文献求助10
12秒前
奉天BB机发布了新的文献求助10
12秒前
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Conference Record, IAS Annual Meeting 1977 820
England and the Discovery of America, 1481-1620 600
Teaching language in context (Third edition) by Derewianka, Beverly; Jones, Pauline 550
Oligomycin, a new antifungal antibiotic 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3583640
求助须知:如何正确求助?哪些是违规求助? 3152886
关于积分的说明 9494504
捐赠科研通 2855533
什么是DOI,文献DOI怎么找? 1569583
邀请新用户注册赠送积分活动 735428
科研通“疑难数据库(出版商)”最低求助积分说明 721228