素数(序理论)
计算机科学
基因组编辑
背景(考古学)
计算生物学
RNA编辑
人工智能
生物
核糖核酸
遗传学
基因
基因组
数学
组合数学
古生物学
作者
Nicolas Mathis,Ahmed Allam,Lucas Kissling,Kim Fabiano Marquart,Lukas Schmidheini,Cristina Solari,Zsolt Balázs,Michael Krauthammer,Gerald Schwank
标识
DOI:10.1038/s41587-022-01613-7
摘要
Prime editing is a versatile genome editing tool but requires experimental optimization of the prime editing guide RNA (pegRNA) to achieve high editing efficiency. Here we conducted a high-throughput screen to analyze prime editing outcomes of 92,423 pegRNAs on a highly diverse set of 13,349 human pathogenic mutations that include base substitutions, insertions and deletions. Based on this dataset, we identified sequence context features that influence prime editing and trained PRIDICT (prime editing guide prediction), an attention-based bidirectional recurrent neural network. PRIDICT reliably predicts editing rates for all small-sized genetic changes with a Spearman’s R of 0.85 and 0.78 for intended and unintended edits, respectively. We validated PRIDICT on endogenous editing sites as well as an external dataset and showed that pegRNAs with high (>70) versus low (<70) PRIDICT scores showed substantially increased prime editing efficiencies in different cell types in vitro (12-fold) and in hepatocytes in vivo (tenfold), highlighting the value of PRIDICT for basic and for translational research applications. The design of prime editing guide RNAs is optimized by deep learning.
科研通智能强力驱动
Strongly Powered by AbleSci AI