H3PO4-Induced Nano-Li3PO4 Pre-reduction Layer to Address Instability between the Nb-Doped Li7La3Zr2O12 Electrolyte and Metallic Li Anode

材料科学 钝化 离子电导率 电解质 兴奋剂 电化学 阳极 化学工程 金属 电导率 纳米技术 图层(电子) 电极 光电子学 冶金 物理化学 化学 工程类
作者
Jiawen Tang,Yajun Niu,Yongjian Zhou,Shuqing Chen,Yan Yang,Xiao Huang,Bingbing Tian
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:15 (4): 5345-5356 被引量:12
标识
DOI:10.1021/acsami.2c21133
摘要

Solid-state batteries based on a metallic Li anode and nonflammable solid electrolytes (SEs) are anticipated to achieve high energy and power densities with absolute safety. In particular, cubic garnet-type Nb-doped Li7La3Zr2O12 (Nb-LLZO) SEs possess superior ionic conductivity, are feasible to prepare under ambient conditions, have strong thermal stability, and are of low cost. However, the interfacial compatibility with Li metal and Li dendrite hazards still hinder the applications of Nb-LLZO. Herein, a quick and efficient solution was applied to address this issue, generating a nano-Li3PO4 pre-reduction layer from the reaction of H3PO4 with the ion-exchanged passivation layer (Li2CO3/LiOH) on the surface of Nb-LLZO. A lithiophilic, electrically insulating interlayer is in situ created when the Li3PO4 modified layer interacts with molten Li, successfully preventing the reduction of Nb5+. The interlayer, which mostly consists of Li3P and Li3PO4, also has a high shear modulus and relatively high Li+ conductivity, which effectively inhibit the growth of Li dendrites. The Li|Li3PO4|Nb-LLZO|Li3PO4|Li symmetric cells stably cycled for over 5000 h at 0.05 mA cm-2 and over 1000 h at a high rate of 0.15 mA cm-2 without any short circuits. The LiFePO4 and S/C hybrid solid-state batteries using the modified Nb-LLZO electrolyte also demonstrated good electrochemical performances, confirming the practical application of this interfacial engineering in various solid-state battery systems. This work offers an efficient solution to the instability issue between the Nb-LLZO SE and metallic Li anode.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Evan发布了新的文献求助10
刚刚
2秒前
李健的小迷弟应助aowu采纳,获得10
3秒前
万能图书馆应助好奇宝宝采纳,获得10
3秒前
RUSeries发布了新的文献求助10
3秒前
ChenZhangyang发布了新的文献求助30
3秒前
自然秋柳发布了新的文献求助10
5秒前
小二郎应助鲜艳的青曼采纳,获得10
6秒前
pluto应助zpq采纳,获得30
7秒前
7秒前
陶醉的鱼完成签到 ,获得积分10
8秒前
英勇的曼岚完成签到,获得积分20
8秒前
小花完成签到,获得积分10
9秒前
rrrrrrry发布了新的文献求助30
9秒前
大意的悟空完成签到,获得积分10
10秒前
10秒前
cocolu应助NATURECATCHER采纳,获得10
10秒前
nenoaowu发布了新的文献求助10
11秒前
iris完成签到 ,获得积分10
11秒前
12秒前
李健的粉丝团团长应助arui采纳,获得10
13秒前
小花发布了新的文献求助10
13秒前
14秒前
Orange应助安静尔云采纳,获得10
15秒前
郭耀锐完成签到,获得积分10
16秒前
好奇宝宝给好奇宝宝的求助进行了留言
16秒前
科目三应助ayw采纳,获得10
17秒前
lala完成签到,获得积分10
17秒前
追寻尔珍关注了科研通微信公众号
18秒前
18秒前
18秒前
19秒前
23完成签到,获得积分10
20秒前
黎威完成签到,获得积分10
20秒前
20秒前
20秒前
22秒前
wawaeryu发布了新的文献求助10
22秒前
Evan完成签到,获得积分10
22秒前
22秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Cognitive Paradigms in Knowledge Organisation 500
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3306889
求助须知:如何正确求助?哪些是违规求助? 2940724
关于积分的说明 8498169
捐赠科研通 2614869
什么是DOI,文献DOI怎么找? 1428544
科研通“疑难数据库(出版商)”最低求助积分说明 663445
邀请新用户注册赠送积分活动 648283