Performance comparisons of the three data assimilation methods for improved predictability of PM2·5: Ensemble Kalman filter, ensemble square root filter, and three-dimensional variational methods

集合卡尔曼滤波器 CMAQ 数据同化 卡尔曼滤波器 可预测性 均方误差 气象学 平方根 环境科学 数学 空气质量指数 算法 统计 扩展卡尔曼滤波器 物理 几何学
作者
Uzzal Kumar Dash,Soon-Young Park,Chul H. Song,Jinhyeok Yu,Keiya Yumimoto,Itsushi Uno
出处
期刊:Environmental Pollution [Elsevier BV]
卷期号:322: 121099-121099 被引量:2
标识
DOI:10.1016/j.envpol.2023.121099
摘要

To improve the predictability of concentrations of atmospheric particulate matter, a data assimilation (DA) system using ensemble square root filter (EnSRF) has been developed for the Community Multiscale Air Quality (CMAQ) model. The EnSRF DA method is a deterministic variant of the ensemble Kalman filter (EnKF) method, which means that unlike the EnKF method, it does not add random noise to the observations. To compare the performances of the EnSRF with those of other DA methods, such as EnKF and 3DVAR (three-dimensional variational), these three methods were applied to the same CMAQ model simulations with identical experimental settings. This is the first attempt in the field of chemical DA to compare the EnKF and EnSRF methods. An identical set of surface fine particulate matter (PM2.5) were assimilated every 6 h by all the DA methods over a CMAQ domain of East Asia, during the period from 01 May to 11 June 2016. In parallel with ‘reanalysis experiments’, we also carried out ‘48 h prediction experiments’ using the optimized initial conditions produced by the three DA methods. Detailed analyses among the three DA methods were then carried out by comparing both the reanalysis and the prediction outputs with the observed surface PM2.5 over four regions (i.e., South Korea, the Beijing–Tianjin–Hebei (BTH) region, Shandong province, and Liaoning province). The comparison results revealed that the EnSRF produced the best reanalysis and prediction fields in terms of several statistical metrics. For example, when the 3DVAR, EnKF, and EnSRF methods were used, averaged normalized mean biases (NMBs) decreased by (57.6, 85.6, and 91.8) % in reanalyses and (39.7, 87.6, and 91.5) % in first-day predictions, compared to the CMAQ control experiment (i.e., without DA) over South Korea, respectively. Also, over the three Chinese regions, the EnSRF method outperformed the EnKF and 3DVAR methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fanhaomeng发布了新的文献求助10
刚刚
刚刚
刚刚
上官若男应助科研喵采纳,获得10
刚刚
zhutu完成签到,获得积分10
刚刚
萌萌发布了新的文献求助10
1秒前
1秒前
汪汪发布了新的文献求助10
2秒前
Lucas应助晴天白敬亭采纳,获得10
2秒前
爱吃草莓发布了新的文献求助10
3秒前
香香香发布了新的文献求助10
4秒前
SMULJL发布了新的文献求助10
4秒前
Wguan完成签到,获得积分10
4秒前
misalia发布了新的文献求助10
4秒前
ramsey33发布了新的文献求助30
5秒前
LEO1253285120完成签到,获得积分10
6秒前
万能图书馆应助优秀笑槐采纳,获得10
6秒前
休眠火山发布了新的文献求助10
7秒前
8秒前
zh完成签到,获得积分10
9秒前
gaga完成签到,获得积分10
9秒前
ice7发布了新的文献求助20
11秒前
小马甲应助科研通管家采纳,获得10
12秒前
lone623应助科研通管家采纳,获得10
12秒前
Akim应助YY本Y采纳,获得10
12秒前
SciGPT应助科研通管家采纳,获得10
12秒前
搜集达人应助科研通管家采纳,获得10
12秒前
12秒前
Lucas应助科研通管家采纳,获得10
12秒前
12秒前
12秒前
Owen应助科研通管家采纳,获得10
12秒前
12秒前
孙福禄应助科研通管家采纳,获得10
12秒前
12秒前
12秒前
surfing发布了新的文献求助10
13秒前
13秒前
13秒前
14秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Atlas of Interventional Pain Management 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4011327
求助须知:如何正确求助?哪些是违规求助? 3551014
关于积分的说明 11307268
捐赠科研通 3285224
什么是DOI,文献DOI怎么找? 1811001
邀请新用户注册赠送积分活动 886685
科研通“疑难数据库(出版商)”最低求助积分说明 811597