Performance comparisons of the three data assimilation methods for improved predictability of PM2·5: Ensemble Kalman filter, ensemble square root filter, and three-dimensional variational methods

集合卡尔曼滤波器 CMAQ 数据同化 卡尔曼滤波器 可预测性 均方误差 气象学 平方根 环境科学 数学 空气质量指数 算法 统计 扩展卡尔曼滤波器 物理 几何学
作者
Uzzal Kumar Dash,Soon-Young Park,Chul H. Song,Jinhyeok Yu,Keiya Yumimoto,Itsushi Uno
出处
期刊:Environmental Pollution [Elsevier]
卷期号:322: 121099-121099 被引量:2
标识
DOI:10.1016/j.envpol.2023.121099
摘要

To improve the predictability of concentrations of atmospheric particulate matter, a data assimilation (DA) system using ensemble square root filter (EnSRF) has been developed for the Community Multiscale Air Quality (CMAQ) model. The EnSRF DA method is a deterministic variant of the ensemble Kalman filter (EnKF) method, which means that unlike the EnKF method, it does not add random noise to the observations. To compare the performances of the EnSRF with those of other DA methods, such as EnKF and 3DVAR (three-dimensional variational), these three methods were applied to the same CMAQ model simulations with identical experimental settings. This is the first attempt in the field of chemical DA to compare the EnKF and EnSRF methods. An identical set of surface fine particulate matter (PM2.5) were assimilated every 6 h by all the DA methods over a CMAQ domain of East Asia, during the period from 01 May to 11 June 2016. In parallel with ‘reanalysis experiments’, we also carried out ‘48 h prediction experiments’ using the optimized initial conditions produced by the three DA methods. Detailed analyses among the three DA methods were then carried out by comparing both the reanalysis and the prediction outputs with the observed surface PM2.5 over four regions (i.e., South Korea, the Beijing–Tianjin–Hebei (BTH) region, Shandong province, and Liaoning province). The comparison results revealed that the EnSRF produced the best reanalysis and prediction fields in terms of several statistical metrics. For example, when the 3DVAR, EnKF, and EnSRF methods were used, averaged normalized mean biases (NMBs) decreased by (57.6, 85.6, and 91.8) % in reanalyses and (39.7, 87.6, and 91.5) % in first-day predictions, compared to the CMAQ control experiment (i.e., without DA) over South Korea, respectively. Also, over the three Chinese regions, the EnSRF method outperformed the EnKF and 3DVAR methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
四斤瓜完成签到 ,获得积分10
刚刚
LT完成签到 ,获得积分10
15秒前
虚幻元风完成签到 ,获得积分10
43秒前
Cala洛~完成签到 ,获得积分10
44秒前
科研岳完成签到,获得积分10
48秒前
嗒嗒嗒薇完成签到 ,获得积分10
49秒前
可靠若云完成签到,获得积分10
50秒前
joeqin完成签到,获得积分10
52秒前
Axs完成签到,获得积分10
53秒前
liangguangyuan完成签到 ,获得积分10
59秒前
背书强完成签到 ,获得积分10
1分钟前
kd1412完成签到 ,获得积分10
1分钟前
你好纠结伦完成签到,获得积分10
1分钟前
所得皆所愿完成签到 ,获得积分10
1分钟前
黄沙漠完成签到 ,获得积分10
1分钟前
跳跃的白云完成签到 ,获得积分10
1分钟前
1分钟前
yx发布了新的文献求助10
1分钟前
1分钟前
1分钟前
Damon完成签到 ,获得积分10
1分钟前
1分钟前
微笑芒果完成签到 ,获得积分10
1分钟前
woshiwuziq完成签到 ,获得积分10
1分钟前
墨墨完成签到,获得积分10
1分钟前
orixero应助yx采纳,获得10
1分钟前
AmyHu完成签到,获得积分10
1分钟前
沐夏应助阔达的秋柔采纳,获得10
1分钟前
大猫完成签到 ,获得积分10
1分钟前
1分钟前
LIN发布了新的文献求助10
1分钟前
温柔觅松完成签到 ,获得积分10
1分钟前
汉堡包应助LIN采纳,获得10
1分钟前
阔达的秋柔完成签到,获得积分20
1分钟前
2分钟前
天元神尊完成签到 ,获得积分10
2分钟前
王磊完成签到 ,获得积分10
2分钟前
lichee完成签到 ,获得积分10
2分钟前
沿途东行完成签到 ,获得积分10
2分钟前
胖胖完成签到 ,获得积分0
2分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
RNAの科学 ―時代を拓く生体分子― 金井 昭夫(編) 1000
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
Education and Upward Social Mobility in China: Imagining Positive Sociology with Bourdieu 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3353569
求助须知:如何正确求助?哪些是违规求助? 2978155
关于积分的说明 8683992
捐赠科研通 2659598
什么是DOI,文献DOI怎么找? 1456286
科研通“疑难数据库(出版商)”最低求助积分说明 674327
邀请新用户注册赠送积分活动 665049