已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Performance comparisons of the three data assimilation methods for improved predictability of PM2·5: Ensemble Kalman filter, ensemble square root filter, and three-dimensional variational methods

集合卡尔曼滤波器 CMAQ 数据同化 卡尔曼滤波器 可预测性 均方误差 气象学 平方根 环境科学 数学 空气质量指数 算法 统计 扩展卡尔曼滤波器 物理 几何学
作者
Uzzal Kumar Dash,Soon-Young Park,Chul H. Song,Jinhyeok Yu,Keiya Yumimoto,Itsushi Uno
出处
期刊:Environmental Pollution [Elsevier]
卷期号:322: 121099-121099 被引量:2
标识
DOI:10.1016/j.envpol.2023.121099
摘要

To improve the predictability of concentrations of atmospheric particulate matter, a data assimilation (DA) system using ensemble square root filter (EnSRF) has been developed for the Community Multiscale Air Quality (CMAQ) model. The EnSRF DA method is a deterministic variant of the ensemble Kalman filter (EnKF) method, which means that unlike the EnKF method, it does not add random noise to the observations. To compare the performances of the EnSRF with those of other DA methods, such as EnKF and 3DVAR (three-dimensional variational), these three methods were applied to the same CMAQ model simulations with identical experimental settings. This is the first attempt in the field of chemical DA to compare the EnKF and EnSRF methods. An identical set of surface fine particulate matter (PM2.5) were assimilated every 6 h by all the DA methods over a CMAQ domain of East Asia, during the period from 01 May to 11 June 2016. In parallel with ‘reanalysis experiments’, we also carried out ‘48 h prediction experiments’ using the optimized initial conditions produced by the three DA methods. Detailed analyses among the three DA methods were then carried out by comparing both the reanalysis and the prediction outputs with the observed surface PM2.5 over four regions (i.e., South Korea, the Beijing–Tianjin–Hebei (BTH) region, Shandong province, and Liaoning province). The comparison results revealed that the EnSRF produced the best reanalysis and prediction fields in terms of several statistical metrics. For example, when the 3DVAR, EnKF, and EnSRF methods were used, averaged normalized mean biases (NMBs) decreased by (57.6, 85.6, and 91.8) % in reanalyses and (39.7, 87.6, and 91.5) % in first-day predictions, compared to the CMAQ control experiment (i.e., without DA) over South Korea, respectively. Also, over the three Chinese regions, the EnSRF method outperformed the EnKF and 3DVAR methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李爱国应助莱斯够瓦瑞丝采纳,获得10
2秒前
2秒前
2秒前
yuyu发布了新的文献求助10
2秒前
彭于晏应助11231采纳,获得10
3秒前
执着的以筠完成签到 ,获得积分10
4秒前
粽子发布了新的文献求助10
6秒前
加强派克发布了新的文献求助10
7秒前
安详的夜春完成签到 ,获得积分10
8秒前
8秒前
9秒前
科研通AI2S应助yao采纳,获得10
9秒前
yuanyuan发布了新的文献求助30
9秒前
10秒前
Owen应助咚咚采纳,获得10
12秒前
13秒前
Crystal发布了新的文献求助10
14秒前
15秒前
Lucas应助读书的时候采纳,获得10
15秒前
所所应助简单寻冬采纳,获得10
15秒前
Ava应助accept小猫采纳,获得10
16秒前
LILI完成签到 ,获得积分10
17秒前
17秒前
19秒前
20秒前
21秒前
sys549发布了新的文献求助10
23秒前
lzy发布了新的文献求助10
24秒前
上官若男应助BAOBAO采纳,获得10
24秒前
24秒前
cyy发布了新的文献求助10
24秒前
阳光男孩完成签到 ,获得积分10
25秒前
cgr完成签到,获得积分10
25秒前
FG发布了新的文献求助10
26秒前
cgr发布了新的文献求助10
27秒前
顾矜应助初遇之时最暖采纳,获得10
28秒前
乐乐应助Wendy采纳,获得10
30秒前
白猫完成签到 ,获得积分10
30秒前
Ava应助动听葵阴采纳,获得10
31秒前
小二郎应助汤圆和lucky采纳,获得10
32秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5746095
求助须知:如何正确求助?哪些是违规求助? 5430774
关于积分的说明 15354692
捐赠科研通 4885972
什么是DOI,文献DOI怎么找? 2626998
邀请新用户注册赠送积分活动 1575502
关于科研通互助平台的介绍 1532213