Ultrasonically Activated Liquid Metal Catalysts in Water for Enhanced Hydrogenation Efficiency

材料科学 催化作用 金属 化学工程 活性炭 无机化学 冶金 有机化学 吸附 化学 工程类
作者
Nichayanan Manyuan,N. Tanimoto,K. Ueda,Ken Yamamoto,Tomoharu Tokunaga,Masaki Nishio,Tetsu Yonezawa,Hideya Kawasaki
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
标识
DOI:10.1021/acsami.4c19936
摘要

Hydride (H–) species on oxides have been extensively studied over the past few decades because of their critical role in various catalytic processes. Their syntheses require high temperatures and the presence of hydrogen, which involves complex equipment, high energy costs, and strict safety protocols. Hydride species tend to decompose in the presence of atmospheric oxygen and water, which reduces their catalytic activities. These challenges highlight the need for further research to improve the stability and efficiency of catalytic processes and develop safer and cost-effective synthesis methods. This paper introduces an ultrasonic fabrication method for gallium hydride species on liquid metal (LM) nanoparticles (Ga–H@LM NPs) in water and describes the evaluation of their catalytic properties. The Ga–H@LM NPs were synthesized by dispersing liquid metals of eutectic gallium–indium in water using a two-step ultrasonication process in an ice bath. The presence of Ga–H species was confirmed by Fourier-transform infrared spectroscopy. The Ga–H@LM NPs demonstrated the rapid catalytic hydrogenation of 4-nitrophenol and reductive degradation of azo dyes within minutes without the need for external reducing agents like NaBH4. The proposed mechanism involves high-energy ultrasonic cavitation at the interface between LM NPs and water, which promotes the formation of H2 from water and its activation to form Ga–H on particles surface during ultrasonication. This study has significant implications for advancing the field of catalysis because it provides a novel and efficient catalytic method for the synthesis of stable hydride species on gallium oxides.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
久卿晚发布了新的文献求助10
刚刚
一点完成签到,获得积分10
刚刚
刚刚
刚刚
liuzengzhang666完成签到,获得积分10
1秒前
小羊烧鸡发布了新的文献求助10
1秒前
1秒前
2秒前
home完成签到,获得积分10
2秒前
2秒前
3秒前
苹果初雪发布了新的文献求助10
3秒前
3秒前
4秒前
4秒前
5秒前
5秒前
5秒前
Ava应助LYT采纳,获得10
5秒前
6秒前
安静的诗翠关注了科研通微信公众号
6秒前
李健的小迷弟应助恬昱采纳,获得10
6秒前
hhhh发布了新的文献求助10
7秒前
Lds发布了新的文献求助10
7秒前
13679165979发布了新的文献求助10
8秒前
13679165979发布了新的文献求助10
8秒前
13679165979发布了新的文献求助10
8秒前
13679165979发布了新的文献求助10
8秒前
13679165979发布了新的文献求助10
8秒前
13679165979发布了新的文献求助10
8秒前
13679165979发布了新的文献求助10
8秒前
灯笼发布了新的文献求助10
8秒前
单纯夏烟完成签到,获得积分10
8秒前
含羞草发布了新的文献求助10
8秒前
CipherSage应助久卿晚采纳,获得10
9秒前
chenpsy发布了新的文献求助30
9秒前
wwpzhende6发布了新的文献求助10
9秒前
9秒前
9秒前
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 610
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Green Analytical Methods and Miniaturized Sample Preparation techniques for Forensic Drug Analysis 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3561145
求助须知:如何正确求助?哪些是违规求助? 3134912
关于积分的说明 9410275
捐赠科研通 2835309
什么是DOI,文献DOI怎么找? 1558420
邀请新用户注册赠送积分活动 728160
科研通“疑难数据库(出版商)”最低求助积分说明 716722