衣壳
遗传增强
腺相关病毒
脂肪变性
肝细胞
生物
转导(生物物理学)
细胞
病毒学
病毒
载体(分子生物学)
免疫学
基因
重组DNA
内分泌学
体外
遗传学
生物化学
作者
Jae-Jun Kim,Simone N. T. Kurial,Pervinder K. Choksi,Miguel Nunez,Tyler Lunow-Luke,Jan Bartel,Julia Driscoll,Chris Her,Sandeep K. Dhillon,W. Yue,Abhishek Murti,Tin K. Mao,Julian N. Ramos,Amita Tiyaboonchai,Markus Grompe,Aras N. Mattis,Shareef Syed,Bruce M. Wang,Jacquelyn J. Maher,Garrett R. Roll
标识
DOI:10.1038/s41587-024-02523-6
摘要
Abstract Therapeutic efficacy and safety of adeno-associated virus (AAV) liver gene therapy depend on capsid choice. To predict AAV capsid performance under near-clinical conditions, we established side-by-side comparison at single-cell resolution in human livers maintained by normothermic machine perfusion. AAV-LK03 transduced hepatocytes much more efficiently and specifically than AAV5, AAV8 and AAV6, which are most commonly used clinically, and AAV-NP59, which is better at transducing human hepatocytes engrafted in immune-deficient mice. AAV-LK03 preferentially transduced periportal hepatocytes in normal liver, whereas AAV5 targeted pericentral hepatocytes in steatotic liver. AAV5 and AAV8 transduced liver sinusoidal endothelial cells as efficiently as hepatocytes. AAV capsid and steatosis influenced vector episome formation, which determines gene therapy durability, with AAV5 delaying concatemerization. Our findings inform capsid choice in clinical AAV liver gene therapy, including consideration of disease-relevant hepatocyte zonation and effects of steatosis, and facilitate the development of AAV capsids that transduce hepatocytes or other therapeutically relevant cell types in the human liver with maximum efficiency and specificity.
科研通智能强力驱动
Strongly Powered by AbleSci AI