Automatic Vertical Root Fracture Detection on Intraoral Periapical Radiographs With Artificial Intelligence‐Based Image Enhancement

卡帕 科恩卡帕 射线照相术 医学 金标准(测试) 人工智能 臼齿 前磨牙 牙科 诊断准确性 口腔正畸科 核医学 数学 计算机科学 放射科 统计 几何学
作者
Şifa Özsarı,Kıvanç Kamburoğlu,Aviad Tamse,Suna Elçin Yener,Igor Tsesis,Funda Yılmaz,Eyal Rosen
出处
期刊:Dental Traumatology [Wiley]
标识
DOI:10.1111/edt.13027
摘要

ABSTRACT Background/Aim To explore transfer learning ( TL ) techniques for enhancing vertical root fracture ( VRF ) diagnosis accuracy and to assess the impact of artificial intelligence ( AI ) on image enhancement for VRF detection on both extracted teeth images and intraoral images taken from patients. Materials and Methods A dataset of 378 intraoral periapical radiographs comprising 195 teeth with fractures and 183 teeth without fractures serving as controls was included. DenseNet , ConvNext , Inception121, and MobileNetV2 were employed with model fusion. Prior to evaluation, Particle Swarm Optimization ( PSO ) and Deep Learning ( DL ) image enhancement were applied. Performance assessment included accuracy rate, precision, recall, F1 ‐score, AUC , and kappa values. Intra‐ and inter‐observer agreement, according to the Gold Standard ( GS ), were assessed using ICC and t ‐tests. Statistical significance was set at p < 0.05. Results The DenseNet + Inception fusion model achieved the highest accuracy rate of 0.80, with commendable recall, F1 ‐score, and AUC values, supported by precision (0.81) and kappa (0.60) values. Molar tooth examination yielded an accuracy rate, precision, recall, and F1 ‐score of 0.80, with an AUC of 0.84 and kappa of 0.60. For premolar teeth, the fusion network showed an accuracy rate of 0.78, an AUC of 0.78, and notable metrics, including F1 ‐score (0.80), recall (0.85), precision (0.71), and kappa (0.55). ICC results demonstrated acceptable agreement (≥ 0.57 for molars, ≥ 0.52 for premolars). Conclusion TL methods have demonstrated significant potential in enhancing diagnostic accuracy for VRFs in radiographic imaging. TL is emerging as a valuable tool in the development of robust, automated diagnostic systems for VRF identification, ultimately supporting clinicians in delivering more accurate diagnoses.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
nanda完成签到,获得积分10
刚刚
小小高完成签到 ,获得积分10
1秒前
charry完成签到,获得积分10
1秒前
黄大小姐完成签到,获得积分10
1秒前
科研牛人完成签到,获得积分10
2秒前
南宫映榕完成签到,获得积分10
2秒前
丘比特应助獭兔采纳,获得10
2秒前
dildil完成签到,获得积分10
3秒前
haomozc完成签到,获得积分10
3秒前
环走鱼尾纹完成签到 ,获得积分10
4秒前
排骨炖豆角完成签到,获得积分10
4秒前
上官若男应助七田皿采纳,获得10
5秒前
Jasper应助sunyexuan采纳,获得10
5秒前
酷波er应助Huang采纳,获得10
6秒前
牧童完成签到,获得积分10
6秒前
碧蓝丹烟发布了新的文献求助100
6秒前
小白想抱大佬腿完成签到,获得积分10
7秒前
7秒前
一只小鲨鱼完成签到,获得积分10
7秒前
7秒前
7秒前
ceeray23应助秀丽的咖啡采纳,获得10
7秒前
ceeray23应助秀丽的咖啡采纳,获得10
7秒前
kekao完成签到 ,获得积分10
8秒前
8秒前
Umar完成签到,获得积分10
8秒前
8秒前
风起人散完成签到,获得积分10
9秒前
激昂的幻梦完成签到,获得积分10
9秒前
曾曾完成签到,获得积分10
9秒前
顾矜应助zxy采纳,获得10
9秒前
ania完成签到,获得积分10
9秒前
Isco完成签到,获得积分10
9秒前
CodeCraft应助dd99081采纳,获得10
10秒前
研友_VZG7GZ应助鹤鹤采纳,获得10
10秒前
静心安逸发布了新的文献求助10
10秒前
10秒前
111完成签到 ,获得积分10
11秒前
张二狗完成签到,获得积分10
11秒前
汤浩宏发布了新的文献求助10
11秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3455913
求助须知:如何正确求助?哪些是违规求助? 3051146
关于积分的说明 9024812
捐赠科研通 2739917
什么是DOI,文献DOI怎么找? 1502965
科研通“疑难数据库(出版商)”最低求助积分说明 694666
邀请新用户注册赠送积分活动 693479