Accurate Acupoint Localization in 2D Hand Images: Evaluating HRNet and ResNet Architectures for Enhanced Detection Performance

残差神经网络 计算机科学 人工智能 模式识别(心理学) 计算机视觉 深度学习
作者
Seon-Deok Seo,Nuwan Madusanka,Hadi Sedigh Malekroodi,Chang-Soo Na,Myunggi Yi,Byeong-Il Lee
出处
期刊:Current Medical Imaging Reviews [Bentham Science]
卷期号:20
标识
DOI:10.2174/0115734056315235240820080406
摘要

Introduction: This research assesses HRNet and ResNet architectures for their precision in localizing hand acupoints on 2D images, which is integral to automated acupuncture therapy. Objectives: The primary objective was to advance the accuracy of acupoint detection in traditional Korean medicine through the application of these advanced deep-learning models, aiming to improve treatment efficacy. Background: Acupoint localization in traditional Korean medicine is crucial for effective treatment, and the study aims to enhance this process using advanced deep-learning models. Methods: The study employs YOLOv3, YOLOF, and YOLOX-s for object detection within a top-down framework, comparing HRNet and ResNet architectures. These models were trained and tested using datasets annotated by technicians and their mean values, with performance evaluated based on Average Precision at two IoU thresholds. Results: HRNet consistently demonstrated lower mean distance errors across various acupoints compared to ResNet, particularly at a 256x256 pixel resolution. Notably, the HRNet-w48 model surpassed human annotators, including medical experts, in localization accuracy. Conclusion: HRNet's superior performance in acupoint localization suggests its potential to improve the precision and efficacy of acupuncture treatments. The study highlights the promising role of machine learning in enhancing traditional medical practices and underscores the importance of accurate acupoint localization in clinical acupuncture.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
我爱螺蛳粉完成签到 ,获得积分10
2秒前
余温煮鱼完成签到,获得积分10
4秒前
4秒前
hu发布了新的文献求助10
5秒前
圈儿完成签到,获得积分10
5秒前
atmcymed发布了新的文献求助10
5秒前
6秒前
阳光的匕发布了新的文献求助10
9秒前
badmf完成签到,获得积分10
9秒前
turquoise完成签到,获得积分10
10秒前
糜厉发布了新的文献求助10
10秒前
野生菜狗发布了新的文献求助10
11秒前
Camellia完成签到,获得积分10
12秒前
12秒前
Daidai完成签到,获得积分10
13秒前
乐乐应助夏侯夏侯采纳,获得10
14秒前
周周发布了新的文献求助10
16秒前
我是老大应助gdh采纳,获得10
16秒前
帅婴关注了科研通微信公众号
18秒前
18秒前
atmcymed完成签到,获得积分10
19秒前
天道酬勤发布了新的文献求助10
19秒前
SciGPT应助stoneff612采纳,获得10
20秒前
20秒前
传奇3应助miraitowa采纳,获得10
21秒前
21秒前
夏漆应助TJW采纳,获得20
22秒前
22秒前
狂野谷冬发布了新的文献求助10
26秒前
26秒前
天天快乐应助糜厉采纳,获得10
26秒前
tourist585应助袁东采纳,获得20
26秒前
北冥有鱼完成签到,获得积分10
26秒前
支臻完成签到,获得积分10
26秒前
柚子发布了新的文献求助10
27秒前
29秒前
源源发布了新的文献求助10
30秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
The Oxford Handbook of Educational Psychology 600
有EBL数据库的大佬进 Matrix Mathematics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 遗传学 化学工程 基因 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3412586
求助须知:如何正确求助?哪些是违规求助? 3015222
关于积分的说明 8869350
捐赠科研通 2702937
什么是DOI,文献DOI怎么找? 1481967
科研通“疑难数据库(出版商)”最低求助积分说明 685102
邀请新用户注册赠送积分活动 679758