Integrated Biochemical and Computational Methods for Deciphering RNA‐Processing Codes

计算机科学 计算生物学 核糖核酸 化学 生物 生物化学 基因
作者
Chen Du,Weiliang Fan,Yu Zhou
出处
期刊:Wiley Interdisciplinary Reviews - Rna [Wiley]
卷期号:15 (6)
标识
DOI:10.1002/wrna.1875
摘要

RNA processing involves steps such as capping, splicing, polyadenylation, modification, and nuclear export. These steps are essential for transforming genetic information in DNA into proteins and contribute to RNA diversity and complexity. Many biochemical methods have been developed to profile and quantify RNAs, as well as to identify the interactions between RNAs and RNA-binding proteins (RBPs), especially when coupled with high-throughput sequencing technologies. With the rapid accumulation of diverse data, it is crucial to develop computational methods to convert the big data into biological knowledge. In particular, machine learning and deep learning models are commonly utilized to learn the rules or codes governing the transformation from DNA sequences to intriguing RNAs based on manually designed or automatically extracted features. When precise enough, the RNA codes can be incredibly useful for predicting RNA products, decoding the molecular mechanisms, forecasting the impact of disease variants on RNA processing events, and identifying driver mutations. In this review, we systematically summarize the biochemical and computational methods for deciphering five important RNA codes related to alternative splicing, alternative polyadenylation, RNA localization, RNA modifications, and RBP binding. For each code, we review the main types of experimental methods used to generate training data, as well as the key features, strategic model structures, and advantages of representative tools. We also discuss the challenges encountered in developing predictive models using large language models and extensive domain knowledge. Additionally, we highlight useful resources and propose ways to improve computational tools for studying RNA codes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
再见梧桐完成签到,获得积分10
1秒前
1秒前
洛洛完成签到,获得积分10
1秒前
2秒前
2秒前
3秒前
沙海冬完成签到,获得积分10
3秒前
4秒前
dcx完成签到,获得积分10
4秒前
4秒前
Remorn完成签到,获得积分10
5秒前
彬墩墩发布了新的文献求助10
5秒前
yongziwu完成签到,获得积分10
5秒前
5秒前
leilg完成签到 ,获得积分10
5秒前
Simlove完成签到,获得积分10
5秒前
6秒前
7秒前
7秒前
柠檬完成签到,获得积分10
7秒前
老年陈皮发布了新的文献求助10
8秒前
syc完成签到,获得积分10
9秒前
彭于晏应助伶俐的珊采纳,获得10
9秒前
11秒前
李思超发布了新的文献求助220
11秒前
Jun发布了新的文献求助10
11秒前
12秒前
12秒前
Remorn发布了新的文献求助10
13秒前
13秒前
CipherSage应助张姚采纳,获得10
14秒前
14秒前
李健应助52hezi采纳,获得20
15秒前
情怀应助负责的寒梅采纳,获得50
15秒前
15秒前
17秒前
Ren发布了新的文献求助10
17秒前
xyd发布了新的文献求助10
17秒前
遇见发布了新的文献求助10
17秒前
高分求助中
Shape Determination of Large Sedimental Rock Fragments 2000
Sustainability in Tides Chemistry 2000
Wirkstoffdesign 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3128715
求助须知:如何正确求助?哪些是违规求助? 2779520
关于积分的说明 7743611
捐赠科研通 2434839
什么是DOI,文献DOI怎么找? 1293652
科研通“疑难数据库(出版商)”最低求助积分说明 623388
版权声明 600514