Integrated Biochemical and Computational Methods for Deciphering RNA‐Processing Codes

计算机科学 计算生物学 核糖核酸 化学 生物 生物化学 基因
作者
Chen Du,Weiliang Fan,Yu Zhou
出处
期刊:Wiley Interdisciplinary Reviews - Rna [Wiley]
卷期号:15 (6)
标识
DOI:10.1002/wrna.1875
摘要

RNA processing involves steps such as capping, splicing, polyadenylation, modification, and nuclear export. These steps are essential for transforming genetic information in DNA into proteins and contribute to RNA diversity and complexity. Many biochemical methods have been developed to profile and quantify RNAs, as well as to identify the interactions between RNAs and RNA-binding proteins (RBPs), especially when coupled with high-throughput sequencing technologies. With the rapid accumulation of diverse data, it is crucial to develop computational methods to convert the big data into biological knowledge. In particular, machine learning and deep learning models are commonly utilized to learn the rules or codes governing the transformation from DNA sequences to intriguing RNAs based on manually designed or automatically extracted features. When precise enough, the RNA codes can be incredibly useful for predicting RNA products, decoding the molecular mechanisms, forecasting the impact of disease variants on RNA processing events, and identifying driver mutations. In this review, we systematically summarize the biochemical and computational methods for deciphering five important RNA codes related to alternative splicing, alternative polyadenylation, RNA localization, RNA modifications, and RBP binding. For each code, we review the main types of experimental methods used to generate training data, as well as the key features, strategic model structures, and advantages of representative tools. We also discuss the challenges encountered in developing predictive models using large language models and extensive domain knowledge. Additionally, we highlight useful resources and propose ways to improve computational tools for studying RNA codes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
徐徐发布了新的文献求助10
刚刚
ZZZ发布了新的文献求助10
1秒前
懵懂的子骞完成签到 ,获得积分10
2秒前
mammoth发布了新的文献求助40
2秒前
2秒前
英俊的铭应助Chang采纳,获得10
3秒前
3秒前
3秒前
kk子完成签到,获得积分10
4秒前
夏橪发布了新的文献求助10
4秒前
JamesPei应助lunan采纳,获得10
5秒前
传奇3应助qing采纳,获得10
5秒前
卫尔摩斯完成签到,获得积分10
6秒前
6秒前
6秒前
沉默牛排发布了新的文献求助10
6秒前
科研通AI5应助独特微笑采纳,获得10
6秒前
7秒前
7秒前
碧玉墨绿完成签到,获得积分10
7秒前
xiaoma完成签到,获得积分10
7秒前
8秒前
潇洒的擎苍完成签到,获得积分10
8秒前
刘晓纳发布了新的文献求助10
8秒前
晴子发布了新的文献求助10
8秒前
洛鸢发布了新的文献求助10
9秒前
立马毕业完成签到,获得积分10
9秒前
卫尔摩斯发布了新的文献求助10
9秒前
BINBIN完成签到 ,获得积分10
9秒前
hfgeyt完成签到,获得积分10
10秒前
sakurai应助背后的诺言采纳,获得10
10秒前
湘华发布了新的文献求助10
11秒前
Jenny应助lan采纳,获得10
11秒前
单薄的飞松完成签到 ,获得积分10
11秒前
醒醒发布了新的文献求助10
11秒前
12秒前
恨安完成签到,获得积分10
12秒前
jijahui发布了新的文献求助30
12秒前
南瓜咸杏发布了新的文献求助30
12秒前
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762